We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the global behavior of the renormalization operator on a specially constructed Banach manifold that has cubic critical circle maps on its boundary and circle diffeomorphisms in its interior. As an application, we prove results on smoothness of irrational Arnold tongues.
We construct a renormalization operator which acts on analytic circle maps whose critical exponent $\unicode[STIX]{x1D6FC}$ is not necessarily an odd integer $2n+1$, $n\in \mathbb{N}$. When $\unicode[STIX]{x1D6FC}=2n+1$, our definition generalizes cylinder renormalization of analytic critical circle maps by Yampolsky [Hyperbolicity of renormalization of critical circle maps. Publ. Math. Inst. Hautes Études Sci.96 (2002), 1–41]. In the case when $\unicode[STIX]{x1D6FC}$ is close to an odd integer, we prove hyperbolicity of renormalization for maps of bounded type. We use it to prove universality and $C^{1+\unicode[STIX]{x1D6FC}}$-rigidity for such maps.
We present the first example of a poly-time computable Julia set with a recurrent critical point: we prove that the Julia set of the Feigenbaum map is computable in polynomial time.
We use the methods developed with Lyubich for proving complex bounds for real quadratics to extend de Faria's complex a priori bounds to all critical circle maps with an irrational rotation number. The contracting property for renormalizations of critical circle maps follows.
As another application of our methods we present a new proof of a theorem of Petersen on local connectivity of some Siegel Julia sets.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.