We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We complete the classification of the pointed Hopf algebras with finite Gelfand-Kirillov dimension that are liftings of the Jordan plane over a nilpotent-by-finite group, correcting the statement in [N. Andruskiewitsch, I. Angiono and I. Heckenberger, Liftings of Jordan and super Jordan planes, Proc. Edinb. Math. Soc., II. Ser. 61(3) (2018), 661–672.].
We present new examples of finite-dimensional Nichols algebras over fields of characteristic 2 from braided vector spaces that are not of diagonal type, admit realizations as Yetter–Drinfeld modules over finite abelian groups, and are analogous to Nichols algebras of finite Gelfand–Kirillov dimension in characteristic 0. New finite-dimensional pointed Hopf algebras over fields of characteristic 2 are obtained by bosonization with group algebras of suitable finite abelian groups.
We classify pointed Hopf algebras with finite Gelfand–Kirillov dimension whose infinitesimal braiding has dimension 2 but is not of diagonal type, or equivalently is a block. These Hopf algebras are new and turn out to be liftings of either a Jordan or a super Jordan plane over a nilpotent-by-finite group.
Let G be a connected, simply connected, simple complex algebraic group and let ϵ be a primitive ℓth root of one, ℓ odd and 3∤ℓ if G is of type G2. We determine all Hopf algebra quotients of the quantized coordinate algebra 𝒪ϵ(G).
We construct explicit examples of weak Hopf algebras (actually face algebras in the sense of Hayashi [H]) via vacant double groupoids as explained in [AN]. To this end, we first study the Kac exact sequence for matched pairs of groupoids and show that it can be computed via group cohomology. Then we describe explicit examples of finite vacant double groupoids.
This is a survey on pointed Hopf algebras over algebraically closed fields of characteristic 0. We propose to classify pointed Hopf algebras A by first determining the graded Hopf algebra gr A associated to the coradical filtration of A. The A0-coinvariants elements form a braided Hopf algebra R in the category of Yetter-Drinfeld modules over the coradical AQ = kΓ, Γ the group of group-like elements of A, and gr A ≃ R#A0. We call the braiding of the primitive elements of R the infinitesimal braiding of A. If this braiding is of Cartan type [AS2], then it is often possible to determine R, to show that R is generated as an algebra by its primitive elements and finally to compute all deformations or liftings, that is pointed Hopf algebras such that gr A ≃ R#𝕂Γ In the last chapter, as a concrete illustration of the method, we describe explicitly all finite-dimensional pointed Hopf algebras A with abelian group of group-likes G(A) and infinitesimal braiding of type An(up to some exceptional cases). In other words, we compute all the liftings of type An; this result is our main new contribution in this paper.
Introduction
A Hopf algebra A over a field k is called pointed [Sw], [Ml], if all its simple left or right comodules are one-dimensional. The coradical A0 of A is the sum of all its simple subcoalgebras. Thus A is pointed if and only if A0is a group algebra. We will always assume that the field 𝕂 is algebraically closed of characteristic 0 (although several results of the paper hold over arbitrary fields).