Let n be a positive integer, let
$0<p\leqslant p'\leqslant \frac 12$, and let
$\ell \leqslant pn$ be a nonnegative integer. We prove that if
$\mathcal {F},\mathcal {G}\subseteq \{0,1\}^n$ are two families whose cross intersections forbid
$\ell $—that is, they satisfy
$|A\cap B|\neq \ell $ for every
$A\in \mathcal {F}$ and every
$B\in \mathcal {G}$ – then, setting
$t:= \min \{\ell ,pn-\ell \}$, we have the subgaussian bound
$$\begin{align*}\mu_p(\mathcal{F})\, \mu_{p'}(\mathcal{G}) \leqslant 2\exp\Big( - \frac{t^2}{58^2\,pn}\Big), \end{align*}$$
where
$\mu _p$ and
$\mu _{p'}$ denote the p-biased and
$p'$-biased measures on
$\{0,1\}^n$, respectively.