We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\alpha $ be a complex valued $2$-cocycle of finite order of a finite group $G.$ The nth Frobenius–Schur indicator of an irreducible $\alpha $-character of G is defined and its properties are investigated. The indicator is interpreted in general for $n =2$ and it is shown that it can be used to determine whether an irreducible $\alpha $-character is real-valued under the assumption that the order of $\alpha $ and its cohomology class are both $2$. A formula, involving the real $\alpha $-regular conjugacy classes of $G,$ is found to count the number of real-valued irreducible $\alpha $-characters of G under the additional assumption that these characters are class functions.
Let $\alpha $ be a complex-valued $2$-cocycle of a finite group G with $\alpha $ chosen so that the $\alpha $-characters of G are class functions and analogues of the orthogonality relations for ordinary characters are valid. Then the real or rational elements of G that are also $\alpha $-regular are characterised by the values that the irreducible $\alpha $-characters of G take on those respective elements. These new results generalise two known facts concerning such elements and irreducible ordinary characters of $G;$ however, the initial choice of $\alpha $ from its cohomology class is not unique in general and it is shown the results can vary for a different choice.
Let H be a subgroup of a finite group G and let $\alpha $ be a complex-valued $2$-cocycle of $G.$ Conditions are found to ensure there exists a nontrivial element of H that is $\alpha $-regular in $G.$ However, a new result is established allowing a prime by prime analysis of the Sylow subgroups of $C_G(x)$ to determine the $\alpha $-regularity of a given $x\in G.$ In particular, this result implies that every $\alpha _H$-regular element of a normal Hall subgroup H is $\alpha $-regular in $G.$
Let $\alpha $ be a complex-valued $2$-cocycle of a finite group $G.$ A new concept of strict $\alpha $-regularity is introduced and its basic properties are investigated. To illustrate the potential use of this concept, a new proof is offered to show that the number of orbits of G under its action on the set of complex-valued irreducible $\alpha _N$-characters of N equals the number of $\alpha $-regular conjugacy classes of G contained in $N,$ where N is a normal subgroup of $G.$
The Dominion Radio Astrophysical Observatory (DRAO) is carrying out a survey as part of an international collaboration to image the northe, at a common resolution, in emission from all major constituents of the interstellar medium; the neutral atomic gas, the molecular gas, the ionised gas, dust and relativistic plasma. For many of these constituents the angular resolution of the images (1 arcmin) will be more than a factor of 10 better than any previous studies. The aim is to produce a publicly-available database of high resolution, high-dynamic range images of the Galaxy for multi-phase studies of the physical states and processes in the interstellar medium. We will sketch the main scientific motivations as well as describe some preliminary results from the Canadian Galactic Plane Survey/Releve Canadien du Plan Galactique (CGPS/RCPG).
This book is a completely revised new edition of the definitive reference on disorders of hemoglobin. Authored by world-renowned experts, the book focuses on basic science aspects and clinical features of hemoglobinopathies, covering diagnosis, treatment, and future applications of current research. While the second edition continues to address the important molecular, cellular, and genetic components, coverage of clinical issues has been significantly expanded, and there is more practical emphasis on diagnosis and management throughout. The book opens with a review of the scientific underpinnings. Pathophysiology of common hemoglobin disorders is discussed next in an entirely new section devoted to vascular biology, the erythrocyte membrane, nitric oxide biology, and hemolysis. Four sections deal with α and β thalassemia, sickle cell disease, and related conditions, followed by special topics. The second edition concludes with current and developing approaches to treatment, incorporating new agents for iron chelation, methods to induce fetal hemoglobin production, novel treatment approaches, stem cell transplantation, and progress in gene therapy.
A few years ago, an eminent British professor of medicine, while reviewing a new edition of a well-known textbook of medicine, suggested that works of this type were becoming valueless because they were already out of date by the time they were published. His derogatory comments went further: Having taken the trouble to weigh the book, he suggested that volumes of this type would suffer the same fate as dinosaurs and become extinct by collapsing under their excessive weight. Even allowing for this bizarre and completely erroneous view of the biological fate of the dinosaurs, does this argument carry any weight beyond its metaphorical context?
Undoubtedly, there is feeling rife among medical publishers that the day of the major monograph in the biological sciences may be coming to an end. They argue that there is so much information online that the need for works of this type is becoming increasingly limited. Is this really the case? Although it is impossible to deny that the long gestation of monographs of this type may lead to the omission of the occasional “breakthrough” in a field, it seems very important that in any rapidly moving area of the biomedical sciences there is a regular and broad critical review of where it has got to and how it has been modified by recent advances. Not uncommonly in medical research and practice, today's breakthrough is tomorrow's breakdown.
Is the hemoglobin field moving rapidly? This was another question that had to be considered by the editors of this new edition.
In this chapter we describe three relatively rare, clinically complex syndromes in which the occurrence of α thalassemia provided the clue to understanding the molecular basis of each condition. These conditions exemplify the important interplay between clinical observation and human molecular genetics. Two of these syndromes (ATR-16 [OMIM: 141750] and ATR-X [OMIM: 301040]) in which α thalassemia is associated with multiple developmental abnormalities (including mental retardation, MR) are inherited. The third condition (ATMDS [OMIM: 300448]) is an acquired disorder in which α thalassemia appears for the first time in the context of myelodysplasia.
α THALASSEMIA ASSOCIATED WITH MENTAL RETARDATION AND DEVELOPMENTAL ABNORMALITIES
The rare association of α thalassemia and mental retardation (MR) was recognized more than 25 years ago by Weatherall and colleagues. It was known that α thalassemia arises when there is a defect in the synthesis of the α-globin chains of adult hemoglobin (HbA, α2β2). When these authors encountered three mentally retarded children with α thalassemia and a variety of developmental abnormalities, their interest was stimulated by the unusual nature of the α thalassemia. The children were of northern European origin, where α thalassemia is uncommon, and although one would have expected to find clear signs of this inherited anemia in their parents, it appeared to have arisen de novo in the affected offspring. It was thought that the combination of α thalassemia with MR (ATR), and the associated developmental abnormalities represented a new syndrome and that a common genetic defect might be responsible for the diverse clinical manifestations.
Before describing the various ways in which α-globin expression may be downregulated in patients with α thalassemia, it is worth briefly reviewing the normal structure of the human α-globin cluster and how the genes are expressed throughout erythroid differentiation and development.
The α-globin cluster is located in a gene dense region of the genome close to the telomere of chromosome 16 (16p13.3). The genes are arranged along the chromosome in the order, telomere-ς-ψς-αD-ψα1-α2-α1-θ-centromere (Fig. 13.1). Upstream of the α cluster there are four highly conserved, noncoding sequences multispecies conserved sequences called MCS-R1–R4 that are thought to be important in the regulation of the α-like globin genes. They correspond to previously identified erythroid-specific DNase l hypersensitive sites (DHS) referred to as HS-48, HS-40, HS-33, and HS-10, the coordinates referring to their positions (kb) with respect to the ς-globin mRNA cap site. Of these elements, only MCS-R2 (HS-40) has been shown to be essential for α globin expression (summarized in Higgs et al.). The role(s) of the other MCS sequences are as yet unclear.
It has been shown that as progenitors commit to the erythroid lineage and differentiate to form mature red cells, a subset of the key erythroid transcription factors and cofactors (Chapter 4) progressively bind the upstream elements and the promoters of the α-like globin genes. Finally, RNA polymerase II is recruited to both the upstream regions and the globin promoters as transcription starts in early and intermediate erythroblasts.
Over the years, study of the thalassemia syndromes has served as a paradigm for gaining insights into the factors that can regulate or disrupt normal gene expression. The thalassemias constitute a heterogeneous group of naturally occurring, inherited mutations characterized by abnormal globin gene expression resulting in total absence or quantitative reduction of α- or β-globin chain synthesis in human erythroid cells. α Thalassemia is associated with absent or decreased production of α-chains, whereas in the β thalassemias, there is absent or decreased production of β-chains. In those cases in which some of the affected globin chain is synthesized, early studies demonstrated no evidence of an amino acid substitution. In all cases in which genetic evidence was available, the thalassemia gene appeared to be allelic with the structural gene encoding α- or β-globin. The elucidation of the nature of the various molecular lesions in thalassemia has been a fascinating process, and full of surprises. Increase in our knowledge of the molecular basis of β thalassemia has closely followed and depended on progress and technical breakthroughs in the fields of biochemistry and molecular biology. In particular, recombinant DNA and polymerase chain reaction–based technologies have contributed to a virtual explosion of new information on the precise molecular basis of most forms of thalassemia. The accrual of this knowledge has, to a great degree, paralleled the acquisition of new, detailed information on the structure, organization, and function of the normal human globin genes, as described in the preceding chapters.
Over the past 30 years we have become familiar with the way in which different types of hemoglobin are expressed at different stages of development. In the human embryo the main hemoglobins include Hb Portland (ζ2γ2), Hb Gower I (ζ2ε2), and Gower II (α2ε2). In the fetus, HbF (α2γ2) predominates and in the adult, HbA (α2β2) makes up the majority of hemoglobin in red cells. These simple facts belie the complexity of the cellular and molecular processes that bring about these beautifully coordinated changes in the patterns of globin gene expression throughout development.
To understand these phenomena we have to consider the individual components including 1) the origins of erythroid cells in development, 2) the processes by which erythroid cells differentiate to mature red cells at each developmental stage, and 3) the molecular events that produce the patterns of gene expression we observe.
Two different types of erythroid cells are observed during development. The first erythroid cells to be seen in the developing embryo are located in the blood islands of the yolk sac. These primitive erythroid cells are morphologically different from the definitive erythroid cells made in the fetal liver and bone marrow and contain predominantly embryonic hemoglobins. Somewhat later during embryonic development, definitive erythroid and other hematopoietic cells originate from multipotent cells identified in a part of the embryo that lies near the dorsal aorta, in the region close to where the kidneys first develop: the so-called aorta-gonads-mesonephros (AGM) region.
The treatment of hemoglobin disorders is evolving and clinical trials of many new agents are underway. Hydroxyurea is used to increase fetal hemoglobin (HbF) levels, stem cell transplantation has the potential for cure, and a larger repertory of iron chelators might make long-term transfusion more feasible. In this section of five chapters, three cover clinically available treatments, discussing in detail aspects of HbF induction, blood transfusion with iron chelation, and stem cell transplantation. One chapter focuses on innovative treatment approaches that remain, at the time of writing, investigative. Treatments include antioxidants, statins, antiinflammatory agents, transport channel inhibitors, antiadhesive agents, and therapeutic methods of increasing nitric oxide bioavailability. The first patients have been treated in a gene therapy trial in which lentiviral vectors containing therapeutic β-like globin genes are used to counter the results of the sickle or β thalassemia mutation, and a final chapter brings this field up to date.
Transfusions are not innocuous and are complicated by alloimmunization, the transmission of unsuspected viral diseases, and iron overload. Controlled, randomized trials of the utility of transfusions for specific complications are sparse. When transfusion is contemplated, expert opinion, with its pitfalls, is relied on in most instances. Usually, it is unclear if simple transfusion or exchange transfusion yields superior results for sickle cell disease complications such as stroke in children or the acute chest syndrome. Strong personal feelings among clinicians regarding the method of transfusion make the chance of definitive clinical trials dim.
Saliva was obtained by applying capillary tubes to the mouthparts of the cattle tick, Boophilus microplus (Can.), after the subcuticular injection of pilocarpine hydrochloride. Acid-lipid extracts of this saliva showed prostaglandin (PG)-like activity on bioassay. Chromatographic studies confirmed this activity as being due to PGE2. Extracts from homogenates of B. microplus larvae and salivary gland tissue also showed prostaglandin-like activity. A role for PGs in B. microplus feeding mechanisms is discussed.
A model of seed germination is proposed which uses a variable with the units of an osmotic potential (virtual osmotic potential) to integrate the effect of a constant or a varying water potential. This differs from existing models that describe the effects of fixed water potentials on germination, or the effects of fixed priming water potentials on the subsequent germination at a fixed water potential. When a seed is sown, the virtual osmotic potential is assumed to fall at a rate that depends on the ambient water potential, and on the difference between its current and a minimum value. Radicle growth is assumed to initiate when the difference between the ambient water potential and the virtual osmotic potential exceeds a threshold. The germination of carrot and onion seeds at various fixed potentials below 0 MPa was well described by the virtual osmotic potential model. The model was also used to simulate the results of experiments in which seeds were given a single step change in water potential.