We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
This paper presents a cross-linguistic investigation of a constraint on the use on intrinsic frames of reference proposed by Levelt (1984, 1996). This proposed constraint claims that use of intrinsic frames when the ground object is in non-canonical position is blocked due to conflict with gravitational-based reference frames. Regression models of the data from Arabic, K’iche’, Spanish, Yucatec, and Zapotec suggest that this constraint is valid across languages. However, the strength at which the constraint operates is predicted by the frequency of canonical intrinsic frames in the particular language. The ratio of the incidence of intrinsic usage with canonical vs. non-canonical orientation appears to be remarkably uniform across languages, which suggests the possibility of a strong cognitive universal.
This paper presents a shear assay method for the determination of the viscoelastic properties of biological cells. The method was applied to the measurement of the viscoelastic properties of human osteosarcoma (HOS) cells. It involves a combination of shear assay experiments and digital image correlation techniques. Following in situ observations of cell deformation during shear assay experiments, a digital image correlation (DIC) technique was used to determine the local displacement and strain fields. The creep curves were also extracted from multiple digital images that were used to extract the time dependence of local strain under constant stress conditions. The measured creep curves were well described by a generalized viscoelastic Maxwell model. The extracted elastic and viscous parameters were in good agreement with results obtained from prior studies with other techniques. The results also suggested that the nucleus is stiffer than the surrounding cytoplasm of HOS cells.
Email your librarian or administrator to recommend adding this to your organisation's collection.