We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We previously reported that high concentrations (≥3.42 mM) of calcium during in vitro fertilization (IVF) disturbed the extrusion of the second polar body (PBII) in C3H/He inbred mice. In this study, the substrain specificity of this phenomenon was examined under 1.71–6.84 mM calcium concentration in ova from six C3H/He mouse commercially available substrains in Japan. PBII extrusion in ova from J substrains was not affected by calcium concentrations (<10% at any calcium level), but was grossly disturbed at high calcium levels in the ova of other substrains. This result has practical applications for the efficient production of normal zygotes by IVF, therefore contributing to the reduction in the numbers of donor animals for further zygote or embryo manipulation. Care must be taken in choosing IVF medium for particular strains and substrains.
The ALMA twenty-six arcmin2 survey of GOODS-S at one millimeter (ASAGAO) is a deep (1σ ∼ 61μJy/beam) and wide area (26 arcmin2) survey on a contiguous field at 1.2 mm. By combining with archival data, we obtained a deeper map in the same region (1σ ∼ 30μJy/beam−1, synthesized beam size 0.59″ × 0.53″), providing the largest sample of sources (25 sources at 5σ, 45 sources at 4.5σ) among ALMA blank-field surveys. The median redshift of the 4.5σ sources is 2.4. The number counts shows that 52% of the extragalactic background light at 1.2 mm is resolved into discrete sources. We create IR luminosity functions (LFs) at z = 1–3, and constrain the faintest luminosity of the LF at 2 < z < 3. The LFs are consistent with previous results based on other ALMA and SCUBA-2 observations, which suggests a positive luminosity evolution and negative density evolution.
This study evaluated the relationship between radiation and Eustachian tube dysfunction, and examined the radiation dose required to induce otitis media with effusion.
Methods:
The function of 36 Eustachian tubes in 18 patients with head and neck cancer were examined sonotubometrically before, during, and 1, 2 and 3 months after, intensity-modulated radiotherapy. Patients with an increase of 5 dB or less in sound pressure level (dB) during swallowing were categorised as being in the dysfunction group. Additionally, radiation dose distributions were assessed in all Eustachian tubes using three dose–volume histogram parameters.
Results:
Twenty-two of 25 normally functioning Eustachian tubes before radiotherapy (88.0 per cent) shifted to the dysfunction group after therapy. All ears that developed otitis media with effusion belonged to the dysfunction group. The radiation dose threshold evaluation revealed that ears with otitis media with effusion received significantly higher doses to the Eustachian tubes.
Conclusion:
The results indicate a relationship between radiation dose and Eustachian tube dysfunction and otitis media with effusion.
Public stigma alters attitudes towards people with mental illness, and is a particular concern for young people since most mental health problems occur in adolescence and young adulthood. However, little is known about the long-term effects of repeated filmed social contact (FSC) on reducing mental health-related stigma among young adults in the general population, compared with self-instructional Internet search (INS) and control interventions.
Methods.
This study is a parallel-group randomised controlled trial over 12 months conducted in Tokyo, Japan. A total of 259 university students (male n = 150, mean age = 20.0 years, s.d. = 1.2) were recruited from 20 colleges and universities between November 2013 and July 2014, without being provided information about the mental health-related survey or trial. Participants were assigned to one of three groups before completion of the baseline survey (FSC/INS/control = 89/83/87). The FSC group received a computer-based 30-min social contact film with general mental health education and five follow-up web-based FSCs at 2-month intervals. The INS group undertook a 30-min search for mental health-related information with five follow-up web-based reminders for self-instructional searches at 2-month intervals. The control group played PC games and had no follow-up intervention. The main outcome measures were the future (intended behaviour) domain of the Reported and Intended Behaviour Scale at 12 months after the intervention. Analysis was conducted in September 2015.
Results.
At the 12-month follow-up, 218 participants completed the survey (84.1%, 75:70:73). The FSC group showed the greatest change at the 12-month follow-up (FSC: mean change 2.11 [95% CI 1.49, 2.73], INS: 1.04 [0.29, 1.80], control: 0.71 [0.09, 1.33]; FSC v. INS p = 0.037, FSC v. controls p = 0.004). No adverse events were reported during the follow-up period.
Conclusions.
FSC was more successful in reducing stigma at 12 months after intervention than INS or control interventions. FSC could be used to reduce stigma in educational lectures and anti-stigma campaigns targeted at young people.
Study registration.
This study is registered at UMIN-CTR (No. UMIN000012239).
We have conducted 1.1 mm ALMA observations of a contiguous 105” × 50” or 1.5 arcmin2 window in the SXDF-UDS-CANDELS. We achieved a 5σ sensitivity of 0.28 mJy, giving a flat sensus of dusty star-forming galaxies with LIR ~6×1011L⊙ (if Tdust=40K) up to z ~ 10 thanks to the negative K-correction at this wavelength. We detected 5 brightest sources (S/N>6) and 18 low-significant sources (5>S/N>4; they may contain spurious detections, though). One of the 5 brightest ALMA sources (S1.1mm = 0.84 ± 0.09 mJy) is extremely faint in the WFC3 and VLT/HAWK-I images, demonstrating that a contiguous ALMA imaging survey uncovers a faint dust-obscured population invisible in the deep optical/near-infrared surveys. We find a possible [CII]-line emitter at z=5.955 or a low-z CO emitting galaxy within the field, allowing us to constrain the [CII] and/or CO luminosity functions across the history of the universe.
We aimed to examine the clinical usefulness of a new World Health Organization classification scheme for salivary gland mucoepidermoid carcinoma, and to identify the factors most strongly associated with prognosis and outcome.
Methods:
The clinicopathological features of 45 patients who received treatment for mucoepidermoid carcinoma between 1986 and 2010 were retrospectively investigated.
Results:
The overall disease-specific 5-year survival rate was 81.8 per cent. The rate for patients with low-grade tumours (92.5 per cent) was significantly higher than that for patients with intermediate or high-grade tumours (52.2 per cent). Univariate analysis revealed that five factors were significantly associated with five-year survival: age, tumour stage classification, lymph node status, histological grade and treatment method. Four factors were significant in multivariate analysis: age, sex, tumour stage classification and lymph node status.
Conclusion:
The new World Health Organization classification was useful in predicting disease progression in patients with mucoepidermoid carcinoma. Patients with high-grade tumours or other prognostic factors positively associated with disease progression should be carefully evaluated and monitored.
This study aimed to investigate the function of tissue plasminogen activator in the olfactory epithelium of mice following neural injury.
Method:
Transmission electron microscopy was used to study the changes in the morphology of the olfactory epithelium 1–7 days after surgical ablation of the olfactory bulb (bulbectomy).
Results:
Prior to bulbectomy, a uniformly fine material was observed within some regions of the olfactory epithelium of mice deficient in tissue plasminogen activator. At 2–3 days after bulbectomy, there were degenerative changes in the olfactory epithelium. At 5–7 days after bulbectomy, we noted drastic differences in olfactory epithelium morphology between mice deficient in tissue plasminogen activator and wild-type mice (comparisons were made using findings from a previous study). The microvilli seemed to be normal and olfactory vesicles and receptor neuron dendrites were largely intact in the olfactory epithelium of mice deficient in tissue plasminogen activator.
Conclusion:
The tissue plasminogen activator plasmin system may inhibit the regeneration of the olfactory epithelium in the early stages following neural injury.
It is difficult to get a real scale image of the solar system through lecture. A scale model is a classical and one of good solutions (e.g. Handa et al.2003, Handa et al.2008). Through this model, people living in or visiting to the city can physically understand the scale of the solar system. This scale gives 1 cm for Earth's diameter and 115 m for 1 AU. However, some gadget is required to make it attractive for public citizens.
Procyclic forms of Trypanosoma brucei brucei remain and propagate in the midgut of tsetse fly where iron is rich. Additional iron is also required for their growth in in vitro culture. However, little is known about the genes involved in iron metabolism and the mechanism of iron utilization in procyclic-form cells. Therefore, we surveyed the genes involved in iron metabolism in the T. b. brucei genome sequence database. We found a potential homologue of vacuole protein sorting 41 (VPS41), a gene that is required for high-affinity iron transport in Saccharomyces cerevisiae and cloned the full-length gene (TbVPS41). Complementation analysis of TbVPS41 in ΔScvps41 yeast cells showed that TbVPS41 could partially suppress the inability of ΔScvps41 yeast cells to grow on low-iron medium, but it could not suppress the fragmented vacuole phenotype. Further RNA interference (RNAi)-mediated gene knock-down in procyclic-form cells resulted in a significant reduction of growth in low-iron medium; however, no change in growth was observed in normal culture medium. Transmission electron microscopy showed that RNAi caused T. b. brucei cells to have larger numbers of small intracellular vesicles, similar to the fragmented vacuoles observed in ΔScvps41 yeast cells. The present study demonstrates that TbVPS41 plays an important role in the intracellular iron utilization system as well as in the maintenance of normal cellular morphology.
A $q$-discrete analog of the Toda molecule equation and its $N$-soliton solution are constructed by using the bilinear method. The solution is expressed in the Casorati determinant form whose elements are given in terms of the $q$-orthogonal polynomials.
Organic light emitting diodes (OLEDs) containing cathode buffer layers of nanometer thickness were fabricated and their electrical and emitting properties were investigated. The OLEDs have an indium tin oxide (ITO) anode/ copper phthalocyanine (CuPc) / N, N'-dephenyl-N,N'-bis(3-methylphenyl)-1,1'-diphenyl-4,4'-diamine (TPD) / 8- hydroxyquinoline aluminum (Alq3) / buffer layer / Al cathode structure with the buffer layers made from alternating thin films of Alq3 and Al with nanometer thickness. Improvement of driving voltage and the efficiency for the devices were observed by insertion of the buffer layer. It was estimated that some modulations of the Schottky barrier at the Alq3 and the Al cathode interface were induced due to the insertion of the buffer layer and it caused an enhancement of electron injection from the Al cathode. A model of the band structure at the buffer layer was proposed.
We present angle-resolved photoemission measurements for ultrathin In films on Si(111). Depending on the coverage, this system self-organizes into a metallic monolayer with either 4×1 or √7×√3 symmetry relative to the substrate. Electronically, they behave like ideal one- and two-dimensional electron gases (1DEG and 2DEG), respectively. The 4×1 system has atomic chains of In whose energy bands disperse only parallel to the chains, while for the √7×√3 system, the dominant reciprocal space features (in both diffraction and bandstructure) resemble a pseudo-square lattice with only weaker secondary features relating to the √7×√3 periodicity. In both materials the electrons show coupling to the structure. The 1DEG couples strongly to phonons of momentum 2kF, leading to an 8ד2” Peierls-like insulating ground state. The 2DEG appears to be partially stabilized by electron gap formation at the √7×√3 zone boundary.
Tungsten, aluminum oxide and Ti films were deposited onto a Cu substrate by means of a rf magnetron sputtering method. TEM thin foils for cross-sectional irradiation were prepared using a focused ion beam (FIB). Electron irradiation was carried out in a Hitachi H- 1300 electron microscope at I MV. The specimen temperatures during irradiation were 300, 473, 623 and 703K. The phases of W, aluminum oxide and Ti films were identified from selected area diffraction patterns as bcc, amorphous and hcp phases, respectively. The phases of W and Ti did not change due to irradiation. However, the amorphous aluminum oxide phase transformed to crystalline γ-Aluminum oxide. Electron irradiation caused no change in the composition of the interface of W/aluminum oxide, but diffusion was enhanced on the interfaces of aluminum oxide/Ti and Ti/Cu.
Surface reconstructions for MBE grown GaN are identified. Different cases are considered according to the type of substrate or crystal symmetry and surface phase diagrams are obtained. Through different examples, it is shown how growth monitoring can be efficiently achieved through the use of surface reconstructions. Finally, from the observation that a residual arsenic overpressure in the MBE chamber changes the surface reconstructions of cubic (001) GaN grown onto 3C-SiC (001) substrates to that commonly observed for GaN growth on (001) GaAs, it is proposed that arsenic might be a surfactant for nitride growth.
By monitoring RHEED reconstruction patterns during gas source molecular beam epitaxy growth, the optimization of the growth for cubic GaN was carried out successfully. Cubic GaN epilayer having a X-ray diffraction width of 16min and a low temperature photoluminescence emission width of 19meV was obtained on a 3C-SiC substrate by adjusting the effective III/V ratio in-situ during the growth, which can be inferred from the surface reconstruction transitions. It was found that the surface reconstructions of cubic GaN surfaces are good indices for the optimization of growth parameters.
The constant vibration mode and the constant excitation mode in noncontact atomic force microscopy were compared to investigate the force interaction between tip and surface. As a result, we found that the constant excitation mode is much more gentle than the constant vibration mode. We also succeeded in atomic resolution imaging on InP(110) surface not only in the noncontact region but in the contact region for the first time. Furthermore, we found the discontinuity of the force gradient curve on reactive Si(111)7×7 reconstructed surface. We proposed a model to explain the discontinuity with the crossover between the physical and chemical bonding interaction.
Hydrogenated amorphous silicon oxide (a-SiO:H) films were prepared by rf glow discharge decomposition of SiH4, CO2 and H2 gas mixture. These films showed better properties than a-SiC:H films. By applying the a-SiO:H to the p-layer, we attained an efficiency of 12.5% for 1cm2 single junction solar cells and a total-area efficiency of 10.1% for 30cm × 40cm tandem submodules.
A balloon-borne X-ray instrument with the modulation collimator was designed and constructed to study the structure of solar X-ray flares. The angular resolution was approximately one arc minute. The instrument was used on an occasion of X-ray flare on Sept. 27, 1970.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.