We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Military Servicemembers and Veterans are at elevated risk for suicide, but rarely self-identify to their leaders or clinicians regarding their experience of suicidal thoughts. We developed an algorithm to identify posts containing suicide-related content on a military-specific social media platform.
Methods
Publicly-shared social media posts (n = 8449) from a military-specific social media platform were reviewed and labeled by our team for the presence/absence of suicidal thoughts and behaviors and used to train several machine learning models to identify such posts.
Results
The best performing model was a deep learning (RoBERTa) model that incorporated post text and metadata and detected the presence of suicidal posts with relatively high sensitivity (0.85), specificity (0.96), precision (0.64), F1 score (0.73), and an area under the precision-recall curve of 0.84. Compared to non-suicidal posts, suicidal posts were more likely to contain explicit mentions of suicide, descriptions of risk factors (e.g. depression, PTSD) and help-seeking, and first-person singular pronouns.
Conclusions
Our results demonstrate the feasibility and potential promise of using social media posts to identify at-risk Servicemembers and Veterans. Future work will use this approach to deliver targeted interventions to social media users at risk for suicide.
Surgery is the recommended treatment for resectable T4a laryngeal and hypopharyngeal carcinoma. Non-surgical treatment is an option in a select few patients.
Method
This retrospective study was undertaken to assess the treatment outcomes in patients with resectable T4a carcinoma of the larynx and hypopharynx who received either surgical or non-surgical treatment at our institute and to assess factors influencing these outcomes.
Results
A total of 120 patients were included in the study. They were divided into groups A, B and C based on the presence of extralaryngeal spread through laryngeal membrane, cartilage or both. The overall survival was better among patients who received surgery than those who received non-surgical treatment in the three groups. The factor influencing overall survival was the treatment given in the form of surgical versus non-surgical treatment.
Conclusion
Surgery is the preferred treatment for T4a laryngeal and hypopharyngeal carcinoma, even in patients with extralaryngeal spread without cartilage erosion.
The impact of modern high-precision conformal techniques on rare but highly morbid late complications of head and neck radiotherapy, such as necrosis of the bone, cartilage or soft-tissues, is not well described.
Method
Medical records of head and neck cancer patients treated in prospective clinical trials of definitive high-precision radiotherapy were reviewed retrospectively to identify patients with necrosis.
Results
Twelve of 290 patients (4.1 per cent) developed radiotherapy necrosis at a median interval of 4.5 months. There was no significant difference in baseline demographic (age, gender), disease (primary site, stage) and treatment characteristics (radiotherapy technique, total dose, fractionation) of patients developing radiotherapy necrosis versus those without necrosis. Initial management included antibiotics or anti-inflammatory agents, tissue debridement and tracheostomy as appropriate followed by hyperbaric oxygen therapy and resective surgery for persistent symptoms in selected patients.
Conclusion
Multidisciplinary management is essential for the prevention, early diagnosis and successful treatment of radiotherapy necrosis of bone, cartilage or cervical soft tissues.
Camber morphing is an effective way to control the lift generated by any aerofoil and potentially improve the range (as measured by the lift-to-drag ratio) and endurance (as measured by $C_l^{3/2}/C_d$). This can be especially useful for fixed-wing Unmanned Aerial Vehicles (UAVs) undergoing different flying manoeuvres and flight phases. This work investigates the aerodynamic characteristics of the NACA0012 aerofoil morphed using a Single Corrugated Variable-Camber (SCVC) morphing approach. Structural analysis and morphed shapes are obtained based on small-deformation beam theory using chain calculations and validated using finite-element software. The aerofoil is then reconstructed from the camber line using a Radial Basis Function (RBF)-based interpolation method (J.H.S. Fincham and M.I. Friswell, “Aerodynamic optimisation of a camber morphing aerofoil,” Aerosp. Sci. Technol., 2015). The aerodynamic analysis is done by employing two different finite-volume solvers (OpenFOAM and ANSYS-Fluent) and a panel method code (XFoil). Results reveal that the aerodynamic coefficients predicted by the two finite-volume solvers using a fully turbulent flow assumption are similar but differ from those predicted by XFoil. The aerodynamic efficiency and endurance factor of morphed aerofoils indicate that morphing is beneficial at moderate to high lift requirements. Further, the optimal morphing angle increases with an increase in the required lift. Finally, it is observed for a fixed angle-of-attack that an optimum morphing angle exists for which the aerodynamic efficiency becomes maximum.
Background: Since January 1, 2016 2358 people have died from opioid poisoning in Alberta. Buprenorphine/naloxone (bup/nal) is the recommended first line treatment for opioid use disorder (OUD) and this treatment can be initiated in emergency departments and urgent care centres (EDs). Aim Statement: This project aims to spread a quality improvement intervention to all 107 adult EDs in Alberta by March 31, 2020. The intervention supports clinicians to initiate bup/nal for eligible individuals and provide rapid referrals to OUD treatment clinics. Measures & Design: Local ED teams were identified (administrators, clinical nurse educators, physicians and, where available, pharmacists and social workers). Local teams were supported by a provincial project team (project manager, consultant, and five physician leads) through a multi-faceted implementation process using provincial order sets, clinician education products, and patient-facing information. We used administrative ED and pharmacy data to track the number of visits where bup/nal was given in ED, and whether discharged patients continued to fill any opioid agonist treatment (OAT) prescription 30 days after their index ED visit. OUD clinics reported the number of referrals received from EDs and the number attending their first appointment. Patient safety event reports were tracked to identify any unintended negative impacts. Evaluation/Results: We report data from May 15, 2018 (program start) to September 31, 2019. Forty-nine EDs (46% of 107) implemented the program and 22 (45% of 49) reported evaluation data. There were 5385 opioid-related visits to reporting ED sites after program adoption. Bup/nal was given during 832 ED visits (663 unique patients): 7 visits in the 1st quarter the program operated, 55 in the 2nd, 74 in the 3rd, 143 in the 4th, 294 in the 5th, and 255 in the 6th. Among 505 unique discharged patients with 30 day follow up data available 319 (63%) continued to fill any OAT prescription after receiving bup/nal in ED. 16 (70%) of 23 community clinics provided data. EDs referred patients to these clinics 440 times, and 236 referrals (54%) attended their first follow-up appointment. Available data may under-report program impact. 5 patient safety events have been reported, with no harm or minimal harm to the patient. Discussion/Impact: Results demonstrate effective spread and uptake of a standardized provincial ED based early medical intervention program for patients who live with OUD.
Field experiments were carried out in order to investigate if brown manuring (BM) using Sesbania plants can be used to control weeds in maize, especially Cyperus rotundus (Experiment I), and further to optimize the BM technology through appropriate Sesbania seed rate (S), 2,4-D application time (T) and dose (D) (Experiment II). Each BM treatment received a pre-emergence application of pendimethalin 1.0 kg a.i./ha. Experiment I showed that the BM practice using 15 kg/ha Sesbania seed and 2,4-D 0.50 kg a.i./ha applied at 25 DAS led to better control of weeds, especially C. rotundus and higher maize grain yield. Further optimization studies (Experiment II) indicated that among the factors S, T and D, the BM combination S~25 kg/ha, D~0.50 kg a.i./ha and T~25 DAS (i.e. S25T25D0.50) resulted in lowest weed density (3.1/m2) and dry weight (3.8 g/m2) and highest weed control index (89.2%) at 60 days after sowing (DAS) which was at par with another BM practice S15T25D0.50. However, the later BM combination led to significantly higher maize productivity (5.25 t/ha) and profitability (net returns (NR) $878/ha), which were 103 and 280% higher, respectively, than the weedy check (WC). The Sesbania seed rate S~15 kg/ha gave 7% higher maize grain yield and 12% higher NR than its corresponding level S~25 kg/ha. Therefore, Sesbania BM with 15 kg seeds/ha and 2,4-D at 0.50 kg a.i/ha applied at 25 DAS can be recommended for effective and eco-friendly weed management in maize, which would provide higher maize grain yield and enhance farmers' profitability.
Terminal heat stress leads to sizeable yield loss in late-sown wheat in tropical environments. Several synthetic compounds are known to counteract plant stress emanating from abiotic factors. A field experiment was conducted in Sabour (eastern India) during 2013–2016 to investigate the field efficacy of two synthetic compounds, calcium chloride (CaCl2) and arginine, for improving grain yield of two contrasting wheat cultivars (DBW 14 and K 307) facing terminal heat stress. For this, foliar spray of 18.0 mM CaCl2 at booting (CCB) or anthesis (CCA), 9.0 mM CaCl2 at both booting and anthesis (CCB+A), 2.5 mM arginine at booting (ARGB) or anthesis (ARGA) and 1.25 mM arginine at both booting and anthesis (ARGB+A) treatments along with no-spray and water-spray treatments were evaluated in late-sown wheat. The highest grain yield was recorded in treatment CCB+A, followed by CCA and ARGB+A. However, the effect of these compounds was marginal on grain yield when applied only at the booting stage. Grains/ear and thousand-grain weight were found to be the critical determinants for yield in late-sown wheat. During the anthesis to grain filling period, flag-leaf chlorophyll degradation and increase in relative permeability in no-spray treatment were 34–36% and 29–52%, respectively, but these values were reduced considerably in CCB+A treatment followed CCA. Thus, foliar spray of 9.0 mM CaCl2 both at booting and anthesis stages may be recommended for alleviating the negative impacts of terminal heat stress in late-sown wheat and improving its productivity (>13%).
In this paper, longitudinal and lateral-directional aerodynamic characterisation of the Cropped Delta Reflex Wing (CDRW) configuration–based unmanned aerial vehicle is carried out by means of full-scale static wind-tunnel tests followed by full-scale flight testing. A predecided set of longitudinal and lateral/directional manoeuvres is performed to acquire the respective flight data, using a dedicated onboard flight data acquisition system. The compatibility of the acquired dynamics is quantified, in terms of scale factors and biases of the measured variables, using Kinematic consistency check. Maximum likelihood (ML), least squares and newly emerging neural Gauss–Newton (NGN) methods were implemented for a wing-alone delta configuration, mainly to capture the dynamic derivatives for both longitudinal and lateral directional cases. Estimated damping and weak dynamic derivatives, which are in general challenging to capture for a wing alone configuration, are consistent using ML and NGN methods. Validation of the estimated parameters with aerodynamic model is performed by proof-of-match exercise and are presented therein.
Background: Buprenorphine/naloxone (bup/nal) is a partial opioid agonist/antagonist and recommended first line treatment for opioid use disorder (OUD). Emergency departments (EDs) are a key point of contact with the healthcare system for patients living with OUD. Aim Statement: We implemented a multi-disciplinary quality improvement project to screen patients for OUD, initiate bup/nal for eligible individuals, and provide rapid next business day walk-in referrals to addiction clinics in the community. Measures & Design: From May to September 2018, our team worked with three ED sites and three addiction clinics to pilot the program. Implementation involved alignment with regulatory requirements, physician education, coordination with pharmacy to ensure in-ED medication access, and nurse education. The project is supported by a full-time project manager, data analyst, operations leaders, physician champions, provincial pharmacy, and the Emergency Strategic Clinical Network leadership team. For our pilot, our evaluation objective was to determine the degree to which our initiation and referral pathway was being utilized. We used administrative data to track the number of patients given bup/nal in ED, their demographics and whether they continued to fill bup/nal prescriptions 30 days after their ED visit. Addiction clinics reported both the number of patients referred to them and the number of patients attending their referral. Evaluation/Results: Administrative data shows 568 opioid-related visits to ED pilot sites during the pilot phase. Bup/nal was given to 60 unique patients in the ED during 66 unique visits. There were 32 (53%) male patients and 28 (47%) female patients. Median patient age was 34 (range: 21 to 79). ED visits where bup/nal was given had a median length of stay of 6 hours 57 minutes (IQR: 6 hours 20 minutes) and Canadian Triage Acuity Scores as follows: Level 1 – 1 (2%), Level 2 – 21 (32%), Level 3 – 32 (48%), Level 4 – 11 (17%), Level 5 – 1 (2%). 51 (77%) of these visits led to discharge. 24 (47%) discharged patients given bup/nal in ED continued to fill bup/nal prescriptions 30 days after their index ED visit. EDs also referred 37 patients with OUD to the 3 community clinics, and 16 of those individuals (43%) attended their first follow-up appointment. Discussion/Impact: Our pilot project demonstrates that with dedicated resources and broad institutional support, ED patients with OUD can be appropriately initiated on bup/nal and referred to community care.
The detection of a neutron star merger by the Advanced Laser Interferometer Gravitational-Wave Observatory and Advanced Virgo gravitational wave detectors, and the subsequent detection of an electromagnetic counterpart have opened a new era of transient astronomy. With upgrades to the Advanced Laser Interferometer Gravitational-Wave Observatory and Advanced Virgo detectors and new detectors coming online in Japan and India, neutron star mergers will be detected at a higher rate in the future, starting with the O3 observing run which will begin in early 2019. The detection of electromagnetic emission from these mergers provides vital information about merger parameters and allows independent measurement of the Hubble constant. The Australian Square Kilometre Array Pathfinder is expected to become fully operational in early 2019, and its 30 deg2 field of view will enable us to rapidly survey large areas of sky. In this work we explore prospects for detecting both prompt and long-term radio emission from neutron star mergers with Australian Square Kilometre Array Pathfinder and determine an observing strategy that optimises the use of telescope time. We investigate different strategies to tile the sky with telescope pointings in order to detect radio counterparts with limited observing time, using 475 simulated gravitational wave events. Our results show a significant improvement in observing efficiency when compared with a naïve strategy of covering the entire localisation above some confidence threshold, even when achieving the same total probability covered.
The problem of unsteady boundary layer flow of a nanofluid over a stretching surface is studied. Heat transfer due to melting is analyzed. Using a similarity transformation the governing coupled nonlinear partial differential equations of the model are reduced to a system of nonlinear ordinary differential equations, and then solved numerically by a Runge-Kutta method with a shooting technique. Dual solutions are observed numerically and their characteristics are analyzed. The effects of the pertinent parameters such as the acceleration parameter, the Brownian motion parameter, the thermophoresis parameter, the Prandtl number and the Lewis number on the velocity, temperature and concentration fields are discussed. Also the effects of these parameters on the skin friction coefficient, the Nusselt number and the Sherwood number are analyzed through graphs. It is observed that the melting phenomenon has a significant effect on the flow, heat and mass transfer characteristics.
Crystal structure analysis of a pyrazole carboxylic acid derivative, 5-(trifluoromethyl)-1-phenyl-1H-pyrazole-4-carboxylic acid (1) has been carried out from laboratory powder X-ray diffraction data. The crystal packing in the pyrazole carboxylic acid derivative exhibits an interplay of strong O–H…O, C–H…N and C–H…F hydrogen bonds to generate a three-dimensional molecular packing via the formation of R22(8) and R22(9) rings. Molecular electrostatic potential calculations indicated that carbonyl oxygen, pyrazole nitrogen and fluorine atoms to be the strongest acceptors. The relative contribution of different interactions to the Hirshfeld surface of pyrazole carboxylic acid and a few related structures retrieved from CSD indicates that H…H, N…H and O…H interactions can account for almost 70% of the Hirsfeld surface area in these compounds.
A new species, Gentiana arunii D.Maity, S.K.Dey, J.Ghosh & Midday, from alpine pasture in Sikkim Himalaya is described and illustrated, and placed in Gentiana section Chondrophyllae Bunge. The new species is compared morphologically with two related taxa, Gentiana glabriuscula T.N.Ho and Gentiana pluviarum W.W.Sm. subsp. subtilis (Harry Sm.) T.N.Ho.
Most nutritional studies on the development of children focus on mother–infant interactions. Maternal nutrition is critically involved in the growth and development of the fetus, but what about the father? The aim is to investigate the effects of paternal methyl-group donor intake (methionine, folate, betaine, choline) on paternal and offspring global DNA (hydroxy)methylation, offspring IGF2 DMR DNA methylation, and birth weight. Questionnaires, 7-day estimated dietary records, whole blood samples, and anthropometric measurements from 74 fathers were obtained. A total of 51 cord blood samples were collected and birth weight was obtained. DNA methylation status was measured using liquid chromatography-tandem mass spectrometry (global DNA (hydroxy)methylation) and pyrosequencing (IGF2 DMR methylation). Paternal betaine intake was positively associated with paternal global DNA hydroxymethylation (0.028% per 100 mg betaine increase, 95% CI: 0.003, 0.053, P=0.03) and cord blood global DNA methylation (0.679% per 100 mg betaine increase, 95% CI: 0.057, 1.302, P=0.03). Paternal methionine intake was positively associated with CpG1 (0.336% per 100 mg methionine increase, 95% CI: 0.103, 0.569, P=0.006), and mean CpG (0.201% per 100 mg methionine increase, 95% CI: 0.001, 0.402, P=0.049) methylation of the IGF2 DMR in cord blood. Further, a negative association between birth weight/birth weight-for-gestational age z-score and paternal betaine/methionine intake was found. In addition, a positive association between choline and birth weight/birth weight-for-gestational age z-score was also observed. Our data indicate a potential impact of paternal methyl-group donor intake on paternal global DNA hydroxymethylation, offspring global and IGF2 DMR DNA methylation, and prenatal growth.
Two new techniques for estimating aircraft stability and control derivatives (parameters) from flight data using feed forward neural networks are proposed. Both techniques use motion variables and control inputs as the input file, while aerodynamic coefficients are presented as the output file for training a neural network. For the purpose of parameter estimation, the trained neural network is presented with a suitably modified input file, and the corresponding predicted output file of aerodynamic coefficients is obtained. Suitable interpretation and manipulation of such input-output files yields the estimated values of the parameters. The methods are validated first on the simulated flight data and then on real flight data obtained by digitising analogue data from a published report. Results are presented to show how the accuracy of the estimates is affected by the topology of the network, the number of iterations and the intensity of the measurement noise in simulated flight data. One of the significant features of the proposed methods is that they do not require guessing of a reasonable set of starting values of the parameters as a popular parameter estimator like the maximum likelihood method does.
This study aimed to develop a functional model of subglottic stenosis by inducing direct airway irritation in transplanted mouse laryngotracheal complexes.
Methods:
Laryngotracheal complexes from C57BL/6 mice were harvested and divided into three groups: uninjured, mechanically injured and chemically injured. Donor laryngotracheal complexes from each group were placed in dorsal subcutaneous pockets of recipient mice. Each week, the transplanted laryngotracheal complexes were harvested, and tissues were fixed, sectioned, and stained with haematoxylin and eosin. Representative slides were reviewed by a blinded pathologist, to determine the formation of granulation tissue, and graded as to the degree of granulation formation.
Results:
Direct airway irritation induced granulation tissue formation under the disrupted epithelium of airway mucosa; this was seen as early as two weeks after chemical injury.
Conclusion:
Results indicate that granulation tissue formation in a murine model may be an efficient tool for investigating the development and treatment of subglottic stenosis.
The aim of the study described herein was to develop and verify an efficient neural network based method for extracting aircraft stability and control derivatives from real flight data using feed-forward neural networks. The proposed method (Modified Delta method) draws its inspiration from feed forward neural network based the Delta method for estimating stability and control derivatives. The neural network is trained using differential variation of aircraft motion/control variables and coefficients as the network inputs and outputs respectively. For the purpose of parameter estimation, the trained neural network is presented with a suitably modified input file and the corresponding predicted output file of aerodynamic coefficients is obtained. An appropriate interpretation and manipulation of such input-output files yields the estimates of the parameter. The method is validated first on the simulated flight data using various combinations and types of real-flight control inputs and then on real flight data. A new technique is also proposed for validating the estimated parameters using feed-forward neural networks.
In a quasineutral plasma, electrons undergo collective oscillations, known as plasma oscillations, when perturbed locally. The oscillations propagate due to finite temperature effects. However, the wave can lose the phase coherence between constituting oscillators in an inhomogeneous plasma (phase mixing) because of the dependence of plasma oscillation frequency on plasma density. The longitudinal electric field associated with the wave may be used to accelerate electrons to high energies by exciting large amplitude wave. However when the maximum amplitude of the wave is reached that plasma can sustain, the wave breaks. The phenomena of wave breaking and phase mixing have applications in plasma heating and particle acceleration. For detailed experimental investigation of these phenomena a new device, inverse mirror plasma experimental device (IMPED), has been designed and fabricated. The detailed considerations taken before designing the device, so that different aspects of these phenomena can be studied in a controlled manner, are described. Specifications of different components of the IMPED machine and their flexibility aspects in upgrading, if necessary, are discussed. Initial results meeting the prerequisite condition of the plasma for such study, such as a quiescent, collisionless and uniform plasma, are presented. The machine produces δnnoise/n ⩽ 1%, Luniform ~ 120 cm at argon filling pressure of ~10−4 mbar and axial magnetic field of B = 1090 G.
The north eastern region (NER) of India receives a high amount of rainfall (2450 mm) both in terms of intensity and frequency. Most of the precipitation goes waste because of improper conservation measures and inadequate rainwater harvesting. Growing a second crop during winter (rabi) season on hill slopes and uplands without moisture conservation measure is almost impossible. A simple and very low-cost technique of in situ soil moisture conservation in maize (Zea mays L.)–toria (Brassica campestris L.) system has been developed using residue of preceding rainy season maize crop and mulching with locally available weed biomass Ambrosia artemisiifolia. Six residue mulching combinations tested were viz. control, Maize stalk cover (MSC), MSC + Ambrosia sp. 5 t/ha, MSC + Ambrosia sp. 10 t/ha, MSC + farmyard manure (FYM) 10 t/ha and MSC + Ambrosia sp. 5 t/ha + poultry manure 5 t/ha under zero tillage (ZT) and conventional tillage (CT) systems. Results showed that in situ residue retention of preceding maize crop along with green biomass of Ambrosia sp., applied before sowing of toria, maintained optimum soil moisture for good growth and higher yield of toria. The soil moisture content was consistently higher under residue mulched plots than that under control. All the residue mulching measures recorded higher crop yield for maize and toria than those observed under residue removal (control). The productivity of toria was enhanced by about 99%, only due to retention of MSC as mulch. Mulching with MSC + Ambrosia sp. 5 t/ha + poultry manure 5 t/ha recorded the highest seed yield of toria (four-year average: 641 kg/ha), which was 228% and 64% higher than no mulching (control) and MSC alone. MSC + FYM 10 t/ha (568.3 t/ha) and MSC + Ambrosia sp. 10 t/ha (517.4 t/ha) were found equally effective and produced significantly higher toria yield than that of control. MSC + Ambrosia mulch 10 t/ha gave the highest net returns and B:C ratio of the maize–toria system. The overall B:C ratios were better under ZT than CT. Thus, the study indicated that the integrated management of crop residues and weed biomass (Ambrosia sp.) under ZT created favourable soil moisture to support double cropping with high yield in hill eco-system of northeastern Indian Himalayas.