We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The First Large Absorption Survey in H i (FLASH) is a large-area radio survey for neutral hydrogen in and around galaxies in the intermediate redshift range $0.4\lt z\lt1.0$, using the 21-cm H i absorption line as a probe of cold neutral gas. The survey uses the ASKAP radio telescope and will cover 24,000 deg$^2$ of sky over the next five years. FLASH breaks new ground in two ways – it is the first large H i absorption survey to be carried out without any optical preselection of targets, and we use an automated Bayesian line-finding tool to search through large datasets and assign a statistical significance to potential line detections. Two Pilot Surveys, covering around 3000 deg$^2$ of sky, were carried out in 2019-22 to test and verify the strategy for the full FLASH survey. The processed data products from these Pilot Surveys (spectral-line cubes, continuum images, and catalogues) are public and available online. In this paper, we describe the FLASH spectral-line and continuum data products and discuss the quality of the H i spectra and the completeness of our automated line search. Finally, we present a set of 30 new H i absorption lines that were robustly detected in the Pilot Surveys, almost doubling the number of known H i absorption systems at $0.4\lt z\lt1$. The detected lines span a wide range in H i optical depth, including three lines with a peak optical depth $\tau\gt1$, and appear to be a mixture of intervening and associated systems. Interestingly, around two-thirds of the lines found in this untargeted sample are detected against sources with a peaked-spectrum radio continuum, which are only a minor (5–20%) fraction of the overall radio-source population. The detection rate for H i absorption lines in the Pilot Surveys (0.3 to 0.5 lines per 40 deg$^2$ ASKAP field) is a factor of two below the expected value. One possible reason for this is the presence of a range of spectral-line artefacts in the Pilot Survey data that have now been mitigated and are not expected to recur in the full FLASH survey. A future paper in this series will discuss the host galaxies of the H i absorption systems identified here.
We present the first results from a new backend on the Australian Square Kilometre Array Pathfinder, the Commensal Realtime ASKAP Fast Transient COherent (CRACO) upgrade. CRACO records millisecond time resolution visibility data, and searches for dispersed fast transient signals including fast radio bursts (FRB), pulsars, and ultra-long period objects (ULPO). With the visibility data, CRACO can localise the transient events to arcsecond-level precision after the detection. Here, we describe the CRACO system and report the result from a sky survey carried out by CRACO at 110-ms resolution during its commissioning phase. During the survey, CRACO detected two FRBs (including one discovered solely with CRACO, FRB 20231027A), reported more precise localisations for four pulsars, discovered two new RRATs, and detected one known ULPO, GPM J1839 $-$10, through its sub-pulse structure. We present a sensitivity calibration of CRACO, finding that it achieves the expected sensitivity of 11.6 Jy ms to bursts of 110 ms duration or less. CRACO is currently running at a 13.8 ms time resolution and aims at a 1.7 ms time resolution before the end of 2024. The planned CRACO has an expected sensitivity of 1.5 Jy ms to bursts of 1.7 ms duration or less and can detect $10\times$ more FRBs than the current CRAFT incoherent sum system (i.e. 0.5 $-$2 localised FRBs per day), enabling us to better constrain the models for FRBs and use them as cosmological probes.
Subjective tinnitus is a common symptom, and there is often an underlying otological cause. This study investigated the degree of tinnitus-related annoyance in patients with chronic otitis media and analysed whether associations with tinnitus severity exist.
Method
The multinational collaborative Chronic Otitis Media Questionnaire-12 study collected prospective data on 478 adult patients suffering from chronic otitis media across 9 otology referral centres in 8 countries. Based on this dataset, we investigated tinnitus severity using participant responses to item 7 of a native version of the Chronic Otitis Media Questionnaire-12.
Results
With respect to tinnitus severity, 23.8 per cent, 17.4 per cent, 15.5 per cent, and 43.4 per cent of participants reported no, minor, moderate, and major inconvenience or greater, respectively. The absence of ear discharge, absence of cholesteatoma, and poorer disease-specific health-related quality-of-life were associated with increased tinnitus severity in patients with chronic otitis media, whereas age, hearing disability and geographical region showed no association.
Conclusion
This analysis provided novel insight into potential risk factors for tinnitus in patients with chronic otitis media.
The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 s to $\sim\!5$ yr. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of $\sim\!162$ h of observations conducted at a central frequency of 888 MHz between 2019 August and 2020 August, with a typical rms sensitivity of $0.24\ \mathrm{mJy\ beam}^{-1}$ and angular resolution of $12-20$ arcseconds. There are 113 fields, each of which was observed for 12 min integration time, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5 131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1 646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039–5617. Another seven are stars, four of which have no previously reported radio detection (SCR J0533–4257, LEHPM 2-783, UCAC3 89–412162 and 2MASS J22414436–6119311). Of the remaining 14 sources, two are active galactic nuclei, six are associated with galaxies and the other six have no multi-wavelength counterparts and are yet to be identified.
In this paper, we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers $31\,\textrm{deg}^{2}$ at $800\,\textrm{MHz}$. As a two-dimensional array of 36$\times$12 m antennas, with baselines ranging from 22 m to 6 km, ASKAP also has excellent snapshot imaging capability and 10 arcsec resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 and $1800\,\textrm{MHz}$ and is expected to facilitate great advances in our understanding of galaxy formation, cosmology, and radio transients while opening new parameter space for discovery of the unknown.
The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700–1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with $\sim$ 15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination $+41^\circ$ made over a 288-MHz band centred at 887.5 MHz.
We describe an ultra-wide-bandwidth, low-frequency receiver recently installed on the Parkes radio telescope. The receiver system provides continuous frequency coverage from 704 to 4032 MHz. For much of the band (${\sim}60\%$), the system temperature is approximately 22 K and the receiver system remains in a linear regime even in the presence of strong mobile phone transmissions. We discuss the scientific and technical aspects of the new receiver, including its astronomical objectives, as well as the feed, receiver, digitiser, and signal processor design. We describe the pipeline routines that form the archive-ready data products and how those data files can be accessed from the archives. The system performance is quantified, including the system noise and linearity, beam shape, antenna efficiency, polarisation calibration, and timing stability.
This paper is concerned with the nonlinear dynamics of spanwise periodic longitudinal vortex modes (Langmuir circulation (LC)) that arise through the instability of two-dimensional periodic flows (waves) in a non-stratified uniformly sheared layer of finite depth. Of particular interest is the excitation of the vortex modes either in the absence of interaction or in resonance, as described by nonlinear amplitude equations built upon the mean field Craik–Leibovich (CL) equations. Since Y-junctions in the surface footprints of Langmuir circulation indicate sporadic increases (doubling) in spacing as they evolve to the scale of sports stadiums, interest is focused on bifurcations that instigate such changes. To that end, surface patterns arising from the linear and nonlinear excitation of the vortex modes are explored, subject to two parameters: a Rayleigh number ${\mathcal{R}}$ present in the CL equations and a symmetry breaking parameter $\unicode[STIX]{x1D6FE}$ in the mixed free surface boundary conditions that relax to those at the layer bottom where $\unicode[STIX]{x1D6FE}=0$. Looking first to linear instability, it is found as $\unicode[STIX]{x1D6FE}$ increases from zero to unity, that the neutral curves evolve from asymmetric near onset to almost symmetric. The nonlinear dynamics of single modes is then studied via an amplitude equation of Ginzburg–Landau type. While typically of cubic order when the bifurcation is supercritical (as it is here) and the neutral curves are parabolic, the Ginzburg–Landau equation must instead here be of quartic order to recover the asymmetry in the neutral curves. This equation is then subjected to an Eckhaus instability analysis, which indicates that linearly unstable subharmonics mostly reside outside the Eckhaus boundary, thereby excluding them as candidates for excitation. The surface pattern is then largely unchanged from its linear counterpart, although the character of the pattern does change when $\unicode[STIX]{x1D6FE}\ll 1$ as a result of symmetry breaking. Attention is then turned to strong resonance between the least stable linear mode and a sub-harmonic of it, as described by coupled nonlinear amplitude equations of Stuart-Landau type. Both 1 : 2 and 1 : 3 resonant interactions are considered. Phase plots and bifurcation diagrams are employed to reveal classes of solution that can occur. Dominant over much of the ${\mathcal{R}}$-$\unicode[STIX]{x1D6FE}$ range considered are non-travelling pure- and mixed-mode equilibrium solutions that act singly or together. To wit, pure modes solutions alone act to realise windrows with spacings in accord with linear theory, while bistability can realise Y-junctions and, depending upon initial conditions, double or even triple the dominant spacing of LC.
Monolithic integrated thin film tandem solar cells consisting of a high bandgap perovskite top cell and a low bandgap thin film bottom cell are expected to reach higher power conversion efficiencies (PCEs) with lower manufacturing cost and environmental impacts than the market-dominant crystalline silicon photovoltaics. There have been several demonstrations of 4-terminal and 2-terminal perovskite tandem devices with CuInGaSe2 (CIGS) or CuInSe2 (CIS) and, similar to the other tandem structures, the optimization of this device relies on optimal choice for the perovskite bandgap and thickness. Therefore, further advancement will be enabled by tuning the perovskite absorber to maximize the photocurrent limited by the current match condition. Here, we systematically study the optical absorption and transmission of perovskite thin films with varying absorber band gap. Based on these results, we model the photocurrent generations in both perovskite and CIS subcells and estimate the performances of projected tandem devices by considering the ideally functioning perovskite and CIS device. Our results show that for perovskite layers with 500 nm thickness the optimal bandgap is around 1.6 eV. With these configurations, PCEs above 20% could be achieved by monolithically integrated perovskite/CIS tandem solar cells. Also by modelling the absorption at every layer we calculate the quantum efficiency at each subcell in addition to tracking optical losses.
Identifying youth who may engage in future substance use could facilitate early identification of substance use disorder vulnerability. We aimed to identify biomarkers that predicted future substance use in psychiatrically un-well youth.
Method
LASSO regression for variable selection was used to predict substance use 24.3 months after neuroimaging assessment in 73 behaviorally and emotionally dysregulated youth aged 13.9 (s.d. = 2.0) years, 30 female, from three clinical sites in the Longitudinal Assessment of Manic Symptoms (LAMS) study. Predictor variables included neural activity during a reward task, cortical thickness, and clinical and demographic variables.
Results
Future substance use was associated with higher left middle prefrontal cortex activity, lower left ventral anterior insula activity, thicker caudal anterior cingulate cortex, higher depression and lower mania scores, not using antipsychotic medication, more parental stress, older age. This combination of variables explained 60.4% of the variance in future substance use, and accurately classified 83.6%.
Conclusions
These variables explained a large proportion of the variance, were useful classifiers of future substance use, and showed the value of combining multiple domains to provide a comprehensive understanding of substance use development. This may be a step toward identifying neural measures that can identify future substance use disorder risk, and act as targets for therapeutic interventions.
Significant progress has been made to date in modelling, computationally, the formation and development of the dust cloud that forms in the air surrounding the rotorcraft under brownout conditions. Modern computational methods are able to replicate not only the development of the dust cloud in appropriate operational scenarios, but also the sensitivity of the shape and density of the dust cloud to the detailed design of the rotorcraft. Results so far suggest that attempts to ameliorate brownout by aerodynamic means, for instance by modifying the rotor properties, will be frustrated to some extent by the inherent instability of the flow field that is produced by the helicopter. Nonetheless, very recent advances in understanding the fundamental mechanisms that lead to the formation of the dust cloud may allow substantial progress to be made once certain elements of the basic physics of the problem are more fully understood and better quantified.
This paper describes the system architecture of a newly constructed radio telescope – the Boolardy engineering test array, which is a prototype of the Australian square kilometre array pathfinder telescope. Phased array feed technology is used to form multiple simultaneous beams per antenna, providing astronomers with unprecedented survey speed. The test array described here is a six-antenna interferometer, fitted with prototype signal processing hardware capable of forming at least nine dual-polarisation beams simultaneously, allowing several square degrees to be imaged in a single pointed observation. The main purpose of the test array is to develop beamforming and wide-field calibration methods for use with the full telescope, but it will also be capable of limited early science demonstrations.
The instability of shallow-water waves on a moderate shear to Langmuir circulation is considered. In such instances, specifically at the shallow end of the inner coastal region, the shear can significantly affect the drift giving rise to profiles markedly different from the simple Stokes drift. Since drift and shear are instrumental in the instability to Langmuir circulation, of key interest is how that variation in turn affects onset to Langmuir circulation. Also of interest is the effect on onset of various boundary conditions. To that end the initial value problem describing the wave–mean flow interaction which accounts for the multiple time scales of the surface waves, evolving shear and evolving Langmuir circulation is crafted from scratch, and includes the wave-induced drift and a consistent set of free-surface boundary conditions. The problem necessitates that Navier–Stokes be employed side by side with a set of mean-field equations. Specifically, the former is used to evaluate events with the shortest time scale, that is the wave field, while the mean field set is averaged over that time scale. This averaged set, the CLg equations, follow from the generalized Lagrangian mean equations and for the case at hand take the same form as the well-known CL equations, albeit with different time and velocity scales. Results based upon the Stokes drift are used as a reference to which those based upon drift profiles corrected for shear are compared, noting that the latter are asymptotic to the former as the waves transition from shallow to deep. Two typical temporal flow fields are considered: shear-driven flow and pressure-driven flow. Relative to the reference case, shear-driven flow is found to be destabilizing while pressure driven are stabilizing to Langmuir circulation. In pressure-driven flows it is further found that multiple layers, as opposed to a single layer, of Langmuir circulation can form, with the most intense circulations at the ocean floor. Moreover, the layers can extend into a region of flow beyond that in which the instability applies, suggesting that Langmuir circulation excited by the instability can in turn drive, as a dynamic consequence, contiguous albeit less intense Langmuir circulation. Pressure-driven flows also admit two preferred spacings, one closely in accord with observation for small-aspect-ratio Langmuir circulation, the other well in excess of observed large-aspect-ratio Langmuir circulation.
DX Cha (HD 104237) is a southern, optically bright Herbig Ae star with an infrared excess, that is part of a small stellar group younger than 5 Myr. We used the APEX and ASTE submillimeter telescopes in Chile to search for continuum and gas emission around this system. Using LABOCA on APEX we detect strong continuum emission around HD104237-A and system component HD104237-E. Our ASTE spectrum detects a double-peaked 12CO(3-2) line profile towards the system, typical of a rotating disk. The new data are used as constraints with MCFOST to produce a disk model that fits the entire SED as well as the observed CO line profile.
The near infrared sky spectral brightness has been measured at the South Pole with the Near Infrared Sky Monitor (NISM) throughout the 2001 winter season. The sky is found to be typically more than an order of magnitude darker than at temperate latitude sites, consistent with previous South Pole observations. Reliable robotic operation of the NISM, a low power, autonomous instrument, has been demonstrated throughout the Antarctic winter. Data analysis yields a median winter value of the 2.4μm (Kdark) sky spectral brightness of ˜120μJy arcsec−2 and an average of 210 ± 80μJy arcsec−2. The 75%, 50%, and 25% quartile values are 270 ± 100, 155 ± 60, and 80 ± 30μJy arcsec−2, respectively.
We are developing a purely commensal survey experiment for fast (<5 s) transient radio sources. Short-timescale transients are associated with the most energetic and brightest single events in the Universe. Our objective is to cover the enormous volume of transients parameter space made available by ASKAP, with an unprecedented combination of sensitivity and field of view. Fast timescale transients open new vistas on the physics of high brightness temperature emission, extreme states of matter and the physics of strong gravitational fields. In addition, the detection of extragalactic objects affords us an entirely new and extremely sensitive probe on the huge reservoir of baryons present in the IGM. We outline here our approach to the considerable challenge involved in detecting fast transients, particularly the development of hardware fast enough to dedisperse and search the ASKAP data stream at or near real-time rates. Through CRAFT, ASKAP will provide the testbed of many of the key technologies and survey modes proposed for high time resolution science with the SKA.