We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Characteristics of particle clustering in a particle-laden turbulent boundary layer at a moderate frictional Reynolds number ($Re_\tau =5500$) are experimentally investigated based on Voronoï analysis. High-inertia sand grains with a large viscous-time-based Stokes number, i.e. $St_p=10^2 - 10^3$, are used as the dispersed phase. The bulk particle volume fraction is $\varPhi _V\sim O(10^{-5})$. Two-dimensional velocity fields of the fluid and particle phases in the streamwise–wall-normal plane are simultaneously measured via particle image/tracking velocimetry. Under the net sedimentation condition, a self-similarity of the geometries of particle clusters is clearly seen in the log layer. This can be characterized by the $-5/3$ power law of the probability density functions of the particle cluster areas and the $y$-scaling of their first- and second-order moments. Considering the self-similarity of wall-attached structures in the attached eddy hypothesis, we propose a conceptual model in which a large proportion of particle clusters prefer to reside on the back ridges of low-momentum attached $u$-structures due to the high-strain effect caused by converging sweep–ejection events. Such a scenario can be partly evidenced by the conditional streamwise spectra of the streamwise and wall-normal fluid-phase velocity components being conditioned inside cluster-occupied regions, which present a distinct $y$-scaling in the log layer. Furthermore, the fluid-phase sweep and ejection events inside particle clusters are observed to be weaker than the cases outside cluster-occupied regions, and the local rate of strain inside cluster-occupied regions is relatively higher than in all unconditional statistics. Finally, conditional statistics reveal that those sand grains with relatively small slip velocities are prone to be captured by low-momentum turbulent motions to form particle clusters.