We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper solves the rational noncommutative analogue of Hilbert’s 17th problem: if a noncommutative rational function is positive semidefinite on all tuples of Hermitian matrices in its domain, then it is a sum of Hermitian squares of noncommutative rational functions. This result is a generalisation and culmination of earlier positivity certificates for noncommutative polynomials or rational functions without Hermitian singularities. More generally, a rational Positivstellensatz for free spectrahedra is given: a noncommutative rational function is positive semidefinite or undefined at every matricial solution of a linear matrix inequality $L\succeq 0$ if and only if it belongs to the rational quadratic module generated by L. The essential intermediate step toward this Positivstellensatz for functions with singularities is an extension theorem for invertible evaluations of linear matrix pencils.
Let $A, B$ be two square complex matrices of the same dimension $n\leq 3$. We show that the following conditions are equivalent. (i) There exists a finite subset $U\subset { \mathbb{N} }_{\geq 2} $ such that for every $t\in \mathbb{N} \setminus U$, $\exp (tA+ B)= \exp (tA)\exp (B)= \exp (B)\exp (tA)$. (ii) The pair $(A, B)$ has property L of Motzkin and Taussky and $\exp (A+ B)= \exp (A)\exp (B)= \exp (B)\exp (A)$. We also characterise the pairs of real matrices $(A, B)$ of dimension three, that satisfy the previous conditions.
We describe some aspects of spectral theory that involve algebraic considerations but need no analysis. Some of the important applications of the results are to the algebra of n×n matrices with entries that are polynomials or more general analytic functions.
We investigate the perturbation of the palindromic eigenvalue problem for the matrix quadratic with A0,A1∈𝒞n×n and (where or H). The perturbation of eigenvalues in the context of general matrix polynomials, palindromic pencils, (semi-Schur) anti-triangular canonical forms and differentiation is discussed.
Let A ∈ ℒ(Cn) and A1, A2 be the unique Hermitian operators such that A = A1 + i A2. The paper is concerned with the differential structure of the numerical range map nA: x ↦ ((A1x, x), (A1x, x)) and its connection with certain natural subsets of the numerical range W(A) of A. We completely characterize the various sets of critical and regular points of the map nA as well as their respective images within W(A). In particular, we show that the plane algebraic curves introduced by R. Kippenhahn appear naturally in this context. They basically coincide with the image of the critical points of nA.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.