To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We answer in a probabilistic setting two questions raised by Stokolos in a private communication. Precisely, given a sequence of random variables $\left\{X_k : k \geq 1\right\}$ uniformly distributed in $(0,1)$ and independent, we consider the following random sets of directions
\begin{equation*}\Omega_{\text{rand},\text{lin}} := \left\{ \frac{\pi X_k}{k}: k \geq 1\right\}\end{equation*}
We prove that almost surely the directional maximal operators associated to those sets of directions are not bounded on $L^p({\mathbb{R}}^2)$ for any $1 \lt p \lt \infty$.
This paper relies on nested postulates of separate, linear and arc-continuity of functions to define analogous properties for sets that are weaker than the requirement that the set be open or closed. This allows three novel characterisations of open or closed sets under convexity or separate convexity postulates: the first pertains to separately convex sets, the second to convex sets and the third to arbitrary subsets of a finite-dimensional Euclidean space. By relying on these constructions, we also obtain new results on the relationship between separate and joint continuity of separately quasiconcave, or separately quasiconvex functions. We present examples to show that the sufficient conditions we offer cannot be dispensed with.
We obtain a criterion for an analytic subset of a Euclidean space to contain points of differentiability of a typical Lipschitz function: namely, that it cannot be covered by countably many sets, each of which is closed and purely unrectifiable (has a zero-length intersection with every $C^1$ curve). Surprisingly, we establish that any set failing this criterion witnesses the opposite extreme of typical behaviour: in any such coverable set, a typical Lipschitz function is everywhere severely non-differentiable.
We discuss an alternative approach to Fréchet derivatives on Banach spaces inspired by a characterisation of derivatives due to Carathéodory. The approach allows many questions of differentiability to be reduced to questions of continuity. We demonstrate how that simplifies the theory of differentiation, including the rules of differentiation and the Schwarz lemma on the symmetry of second-order derivatives. We also provide a short proof of the differentiable dependence of fixed points in the Banach fixed point theorem.
By an influential theorem of Boman, a function $f$ on an open set $U$ in $\mathbb{R}^{d}$ is smooth (${\mathcal{C}}^{\infty }$) if and only if it is arc-smooth, that is, $f\,\circ \,c$ is smooth for every smooth curve $c:\mathbb{R}\rightarrow U$. In this paper we investigate the validity of this result on closed sets. Our main focus is on sets which are the closure of their interior, so-called fat sets. We obtain an analogue of Boman’s theorem on fat closed sets with Hölder boundary and on fat closed subanalytic sets with the property that every boundary point has a basis of neighborhoods each of which intersects the interior in a connected set. If $X\subseteq \mathbb{R}^{d}$ is any such set and $f:X\rightarrow \mathbb{R}$ is arc-smooth, then $f$ extends to a smooth function defined on $\mathbb{R}^{d}$. We also get a version of the Bochnak–Siciak theorem on all closed fat subanalytic sets and all closed sets with Hölder boundary: if $f:X\rightarrow \mathbb{R}$ is the restriction of a smooth function on $\mathbb{R}^{d}$ which is real analytic along all real analytic curves in $X$, then $f$ extends to a holomorphic function on a neighborhood of $X$ in $\mathbb{C}^{d}$. Similar results hold for non-quasianalytic Denjoy–Carleman classes (of Roumieu type). We will also discuss sharpness and applications of these results.
We define an infinite class of fractals, called horizontally and vertically blocked labyrinth fractals, which are dendrites and special Sierpiński carpets. Between any two points in the fractal there is a unique arc α; the length of α is infinite and the set of points where no tangent to α exists is dense in α.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.