To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this article, we study the following question asked by Michael Hartz in a recent paper (Every complete Pick space satisfies the column-row property, to appear in Acta Mathematica): which operator spaces satisfy the column–row property? We provide a complete classification of the column–row property (CRP) for noncommutative $L_{p}$-spaces over semifinite von Neumann algebras. We study other relevant properties of operator spaces that are related to the CRP and discuss their existence and nonexistence for various natural examples of operator spaces.
Let 𝔻n be the open unit polydisc in ℂn, $n \ges 1$, and let H2(𝔻n) be the Hardy space over 𝔻n. For $n\ges 3$, we show that if θ ∈ H∞(𝔻n) is an inner function, then the n-tuple of commuting operators $(C_{z_1}, \ldots , C_{z_n})$ on the Beurling type quotient module ${\cal Q}_{\theta }$ is not essentially normal, where
Rudin's quotient modules of H2(𝔻2) are also shown to be not essentially normal. We prove several results concerning boundary representations of C*-algebras corresponding to different classes of quotient modules including doubly commuting quotient modules and homogeneous quotient modules.
Motivated by the definition of a semigroup compactication of a locally compact group and a large collection of examples, we introduce the notion of an (operator) homogeneous left dual Banach algebra (HLDBA) over a (completely contractive) Banach algebra $A$. We prove a Gelfand-type representation theorem showing that every HLDBA over A has a concrete realization as an (operator) homogeneous left Arens product algebra: the dual of a subspace of $A^{\ast }$ with a compatible (matrix) norm and a type of left Arens product $\Box$. Examples include all left Arens product algebras over $A$, but also, when $A$ is the group algebra of a locally compact group, the dual of its Fourier algebra. Beginning with any (completely) contractive (operator) $A$-module action $Q$ on a space $X$, we introduce the (operator) Fourier space $({\mathcal{F}}_{Q}(A^{\ast }),\Vert \cdot \Vert _{Q})$ and prove that $({\mathcal{F}}_{Q}(A^{\ast })^{\ast },\Box )$ is the unique (operator) HLDBA over $A$ for which there is a weak$^{\ast }$-continuous completely isometric representation as completely bounded operators on $X^{\ast }$ extending the dual module representation. Applying our theory to several examples of (completely contractive) Banach algebras $A$ and module operations, we provide new characterizations of familiar HLDBAs over A and we recover, and often extend, some (completely) isometric representation theorems concerning these HLDBAs.
We prove a necessary and sufficient condition for embeddability of an operator system into ${\mathcal{O}}_{2}$. Using Kirchberg’s theorems on a tensor product of ${\mathcal{O}}_{2}$ and ${\mathcal{O}}_{\infty }$, we establish results on their operator system counterparts ${\mathcal{S}}_{2}$ and ${\mathcal{S}}_{\infty }$. Applications of the results, including some examples describing $C^{\ast }$-envelopes of operator systems, are also discussed.
We establish a spectral characterization theorem for the operators on complex Hilbert spaces of arbitrary dimensions that attain their norm on every closed subspace. The class of these operators is not closed under addition. Nevertheless, we prove that the intersection of these operators with the positive operators forms a proper cone in the real Banach space of hermitian operators.
We prove that an operator system is (min, ess)-nuclear if its $C^{\ast }$-envelope is nuclear. This allows us to deduce that an operator system associated to a generating set of a countable discrete group by Farenick et al. [‘Operator systems from discrete groups’, Comm. Math. Phys.329(1) (2014), 207–238] is (min, ess)-nuclear if and only if the group is amenable. We also make a detailed comparison between ess and other operator system tensor products and show that an operator system associated to a minimal generating set of a finitely generated discrete group (respectively, a finite graph) is (min, max)-nuclear if and only if the group is of order less than or equal to three (respectively, every component of the graph is complete).
We give a proof of the Khintchine inequalities in non-commutative $L_{p}$-spaces for all $0<p<1$. These new inequalities are valid for the Rademacher functions or Gaussian random variables, but also for more general sequences, for example, for the analogues of such random variables in free probability. We also prove a factorization for operators from a Hilbert space to a non-commutative $L_{p}$-space, which is new for $0<p<1$. We end by showing that Mazur maps are Hölder on semifinite von Neumann algebras.
Let G be a finitely generated group with polynomial growth, and let ω be a weight, i.e. a sub-multiplicative function on G with positive values. We study when the weighted group algebra ℓ1 (G, ω) is isomorphic to an operator algebra. We show that ℓ1 (G, ω) is isomorphic to an operator algebra if ω is a polynomial weight with large enough degree or an exponential weight of order 0 < α < 1. We demonstrate that the order of growth of G plays an important role in this problem. Moreover, the algebraic centre of ℓ1 (G, ω) is isomorphic to a Q-algebra, and hence satisfies a multi-variable von Neumann inequality. We also present a more detailed study of our results when G consists of the d-dimensional integers ℤd or the three-dimensional discrete Heisenberg group ℍ3(ℤ). The case of the free group with two generators is considered as a counter-example of groups with exponential growth.
Let A and B be C*-algebras. We prove the slice map conjecture for ideals in the operator space projective tensor product . As an application, a characterization of the prime ideals in the Banach *-algebra is obtained. In addition, we study the primitive ideals, modular ideals and the maximal modular ideals of . We also show that the Banach *-algebra possesses the Wiener property and that, for a subhomogeneous C*-algebra A, the Banach * -algebra is symmetric.
Recently, Daws introduced a notion of co-representation of abelian Hopf–von Neumann algebras on general reflexive Banach spaces. In this note, we show that this notion cannot be extended beyond subhomogeneous Hopf–von Neumann algebras. The key is our observation that, for a von Neumann algebra 𝔐 and a reflexive operator space E, the normal spatial tensor product is a Banach algebra if and only if 𝔐 is subhomogeneous or E is completely isomorphic to column Hilbert space.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.