We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Recently it has been shown that the unique local perimeter minimizing partitioning of the plane into three regions, where one region has finite area and the other two have infinite measure, is given by the so-called standard lens partition. Here we prove a sharp stability inequality for the standard lens, hence strengthening the local minimality of the lens partition in a quantitative form. As an application of this stability result we consider a nonlocal perturbation of an isoperimetric problem.
We investigate the convergence rate of multi-marginal optimal transport costs that are regularized with the Boltzmann–Shannon entropy, as the noise parameter $\varepsilon $ tends to $0$. We establish lower and upper bounds on the difference with the unregularized cost of the form $C\varepsilon \log (1/\varepsilon )+O(\varepsilon )$ for some explicit dimensional constants C depending on the marginals and on the ground cost, but not on the optimal transport plans themselves. Upper bounds are obtained for Lipschitz costs or locally semiconcave costs for a finer estimate, and lower bounds for $\mathscr {C}^2$ costs satisfying some signature condition on the mixed second derivatives that may include degenerate costs, thus generalizing results previously in the two marginals case and for nondegenerate costs. We obtain in particular matching bounds in some typical situations where the optimal plan is deterministic.
Minimizing movements are investigated for an energy which is the superposition of a convex functional and fast small oscillations. Thus a minimizing movement scheme involves a temporal parameter τ and a spatial parameter ε, with τ describing the time step and the frequency of the oscillations being proportional to 1/ε. The extreme cases of fast time scales τ ≪ ε and slow time scales ε ≪ τ have been investigated in [4]. In this paper, the intermediate (critical) case of finite ratio ε/τ > 0 is studied. It is shown that a pinning threshold exists, with initial data below the threshold being a fixed point of the dynamics. A characterization of the pinning threshold is given. For initial data above the pinning threshold, the equation and velocity describing the homogenized motion are determined.
Metric regularity theory lies in the very heart of variational analysis, a relatively new discipline whose appearance was, to a large extent, determined by the needs of modern optimization theory in which such phenomena as nondifferentiability and set-valued mappings naturally appear. The roots of the theory go back to such fundamental results of the classical analysis as the implicit function theorem, Sard theorem and some others. The paper offers a survey of the state of the art of some principal parts of the theory along with a variety of its applications in analysis and optimization.
In this paper, using a scalarization method, we obtain sufficient conditions for the lower semicontinuity and continuity of the solution mapping to a parametric generalized weak vector equilibrium problem with set-valued mappings.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.