We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The famous Cheng-Shen’s conjecture in Riemann-Finsler geometry claims that every n-dimensional closed W-quadratic Randers manifold is a Berwald manifold. In this paper, first we study the Riemann and Ricci curvatures of homogeneous Finsler manifolds and obtain some rigidity theorems. Then, by using this investigation, we construct a family of W-quadratic Randers metrics which are not R-quadratic nor strongly Ricci-quadratic.
The characterization of projectively flat Finsler metrics on an open subset in $R^n$ is the Hilbert’s fourth problem in the regular case. Locally projectively flat Finsler manifolds form an important class of Finsler manifolds. Every Finsler metric induces a spray on the manifold via geodesics. Therefore, it is a natural problem to investigate the geometric and topological properties of manifolds equipped with a spray. In this paper, we study the Pontrjagin classes of a manifold equipped with a locally projectively flat spray and show that such manifold must have zero Pontrjagin classes.
For a smooth strongly convex Minkowski norm $F:\mathbb {R}^n \to \mathbb {R}_{\geq 0}$, we study isometries of the Hessian metric corresponding to the function $E=\tfrac 12F^2$. Under the additional assumption that F is invariant with respect to the standard action of $SO(k)\times SO(n-k)$, we prove a conjecture of Laugwitz stated in 1965. Furthermore, we describe all isometries between such Hessian metrics, and prove Landsberg Unicorn Conjecture for Finsler manifolds of dimension $n\ge 3$ such that at every point the corresponding Minkowski norm has a linear $SO(k)\times SO(n-k)$-symmetry.
We establish a one-to-one correspondence between, on the one hand, Finsler structures on the $2$-sphere with constant curvature $1$ and all geodesics closed, and on the other hand, Weyl connections on certain spindle orbifolds whose symmetric Ricci curvature is positive definite and whose geodesics are all closed. As an application of our duality result, we show that suitable holomorphic deformations of the Veronese embedding $\mathbb {CP}(a_1,a_2)\rightarrow \mathbb {CP}(a_1,(a_1+a_2)/2,a_2)$ of weighted projective spaces provide examples of Finsler $2$-spheres of constant curvature whose geodesics are all closed.
In this paper, we consider projective deformation of the geodesic system of Finsler spaces by holonomy invariant functions. Starting with a Finsler spray $S$ and a holonomy invariant function ${\mathcal{P}}$, we investigate the metrizability property of the projective deformation $\widetilde{S}=S-2\unicode[STIX]{x1D706}{\mathcal{P}}{\mathcal{C}}$. We prove that for any holonomy invariant nontrivial function ${\mathcal{P}}$ and for almost every value $\unicode[STIX]{x1D706}\in \mathbb{R}$, such deformation is not Finsler metrizable. We identify the cases where such deformation can lead to a metrizable spray. In these cases, the holonomy invariant function ${\mathcal{P}}$ is necessarily one of the principal curvatures of the geodesic structure.
We study the long-standing problem of the existence of non-Berwaldian Landsberg spaces from the perspective of conformal transformations. We calculate the Berwald and Landsberg tensors in terms of the T-tensor and show that there are Landsberg spaces with nonvanishing T-tensor. We give a necessary condition for a Landsberg space to be Berwaldian. We find conditions under which the Landsberg spaces cannot be Berwaldian and give examples of ($y$-local) non-Berwaldian Landsberg spaces.
In this paper, we study a class of homogeneous Finsler metrics of vanishing $S$-curvature on a $(4n+3)$-dimensional sphere. We find a second order ordinary differential equation that characterizes Einstein metrics with constant Ricci curvature $1$ in this class. Using this equation we show that there are infinitely many homogeneous Einstein metrics on $S^{4n+3}$ of constant Ricci curvature $1$ and vanishing $S$-curvature. They contain the canonical metric on $S^{4n+3}$ of constant sectional curvature $1$ and the Einstein metric of non-constant sectional curvature given by Jensen in 1973.
We investigate existence and uniqueness of p-means ep and the median e1 of a probability measure μ on a Finsler manifold, in relation with the convexity of the support of μ. We prove that ep is the limit point of a continuous time gradient flow. Under some additional condition which is always satisfied for p≥2, a discretization of this path converges to ep. This provides an algorithm for determining the Finsler center points.
We study an important class of Finsler metrics, namely, Randers metrics. We classify Randers metrics of scalar flag curvature whose S-curvatures are isotropic. This class of Randers metrics contains all projectively flat Randers metrics with isotropic S-curvature and Randers metrics of constant flag curvature.
Matsumoto [10] remarked that some locally projectively flat Finsler spaces of non-zero constant curvature may be Riemannian spaces of non-zero constant curvature. The Riemannian connection, however, must be metric compatible, and this requirement places restrictions on the geodesic coefficients for the Finsler space in the form of a system of partial differential equations. In this paper, we derive this system of equations for the case where the geodesic coefficients are quadratic in the tangent space variables yi, and determine the solutions. We recover two standard Remannian metrics of non-zero constant curvature from this class of solutions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.