We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We determine the geometric monodromy groups attached to various families, both one-parameter and multi-parameter, of exponential sums over finite fields, or, more precisely, the geometric monodromy groups of the $\ell $-adic local systems on affine spaces in characteristic $p> 0$ whose trace functions are these exponential sums. The exponential sums here are much more general than we previously were able to consider. As a byproduct, we determine the number of irreducible components of maximal dimension in certain intersections of Fermat surfaces. We also show that in any family of such local systems, say parameterized by an affine space S, there is a dense open set of S over which the geometric monodromy group of the corresponding local system is a fixed known group.
Inspired by the work of Bourgain and Garaev (2013), we provide new bounds for certain weighted bilinear Kloosterman sums in polynomial rings over a finite field. As an application, we build upon and extend some results of Sawin and Shusterman (2022). These results include bounds for exponential sums weighted by the Möbius function and a level of distribution for irreducible polynomials beyond 1/2, with arbitrary composite modulus. Additionally, we can do better when averaging over the modulus, to give an analogue of the Bombieri-Vinogradov Theorem with a level of distribution even further beyond 1/2.
In this paper, we provide an application to the random distance-t walk in finite planes and derive asymptotic formulas (as $q \to \infty $) for the probability of return to start point after $\ell $ steps based on the “vertical” equidistribution of Kloosterman sums established by N. Katz. This work relies on a “Euclidean” association scheme studied in prior work of W. M. Kwok, E. Bannai, O. Shimabukuro, and H. Tanaka. We also provide a self-contained computation of the P-matrix and intersection numbers of this scheme for convenience in our application as well as a more explicit form for the intersection numbers in the planar case.
We obtain new bounds on short Weil sums over small multiplicative subgroups of prime finite fields which remain nontrivial in the range the classical Weil bound is already trivial. The method we use is a blend of techniques coming from algebraic geometry and additive combinatorics.
We prove that for any prime power $q\notin \{3,4,5\}$, the cubic extension $\mathbb {F}_{q^{3}}$ of the finite field $\mathbb {F}_{q}$ contains a primitive element $\xi $ such that $\xi +\xi ^{-1}$ is also primitive, and $\operatorname {\mathrm {Tr}}_{\mathbb {F}_{q^{3}}/\mathbb {F}_{q}}(\xi )=a$ for any prescribed $a\in \mathbb {F}_{q}$. This completes the proof of a conjecture of Gupta et al. [‘Primitive element pairs with one prescribed trace over a finite field’, Finite Fields Appl.54 (2018), 1–14] concerning the analogous problem over an extension of arbitrary degree $n\ge 3$.
In this paper, we investigate the distribution of the maximum of partial sums of families of $m$-periodic complex-valued functions satisfying certain conditions. We obtain precise uniform estimates for the distribution function of this maximum in a near-optimal range. Our results apply to partial sums of Kloosterman sums and other families of $\ell$-adic trace functions, and are as strong as those obtained by Bober, Goldmakher, Granville and Koukoulopoulos for character sums. In particular, we improve on the recent work of the third author for Birch sums. However, unlike character sums, we are able to construct families of $m$-periodic complex-valued functions which satisfy our conditions, but for which the Pólya–Vinogradov inequality is sharp.
Let $t:{\mathbb F_p} \to C$ be a complex valued function on ${\mathbb F_p}$. A classical problem in analytic number theory is bounding the maximum
$$M(t): = \mathop {\max }\limits_{0 \le H < p} \left| {{1 \over {\sqrt p }}\sum\limits_{0 \le n < H} {t(n)} } \right|$$
of the absolute value of the incomplete sums $(1/\sqrt p )\sum\nolimits_{0 \le n < H} {t(n)} $. In this very general context one of the most important results is the Pólya–Vinogradov bound
where $\hat t:{\mathbb F_p} \to \mathbb C$ is the normalized Fourier transform of t. In this paper we provide a lower bound for certain incomplete Kloosterman sums, namely we prove that for any $\varepsilon > 0$ there exists a large subset of $a \in \mathbb F_p^ \times $ such that for $${\rm{k}}{1_{a,1,p}}:x \mapsto e((ax + \bar x)/p)$$ we have
We prove that sums of length about $q^{3/2}$ of Hecke eigenvalues of automorphic forms on $\operatorname{SL}_{3}(\mathbf{Z})$ do not correlate with $q$-periodic functions with bounded Fourier transform. This generalizes the earlier results of Munshi and Holowinsky–Nelson, corresponding to multiplicative Dirichlet characters, and applies, in particular, to trace functions of small conductor modulo primes.
In this paper, we investigate the distribution of the maximum of partial sums of certain cubic exponential sums, commonly known as ‘Birch sums’. Our main theorem gives upper and lower bounds (of nearly the same order of magnitude) for the distribution of large values of this maximum, that hold in a wide uniform range. This improves a recent result of Kowalski and Sawin. The proofs use a blend of probabilistic methods, harmonic analysis techniques, and deep tools from algebraic geometry. The results can also be generalized to other types of $\ell$-adic trace functions. In particular, the lower bound of our result also holds for partial sums of Kloosterman sums. As an application, we show that there exist $x\in [1,p]$ and $a\in \mathbb{F}_{p}^{\times }$ such that $|\sum _{n\leqslant x}\exp (2\unicode[STIX]{x1D70B}i(n^{3}+an)/p)|\geqslant (2/\unicode[STIX]{x1D70B}+o(1))\sqrt{p}\log \log p$. The uniformity of our results suggests that this bound is optimal, up to the value of the constant.
Let ${{\mathbf{F}}_{q}}[T]$ be the ring of polynomials over the finite field of $q$ elements and $Y$ a large integer. We say a polynomial in ${{\mathbf{F}}_{q}}[T]$ is $Y$-smooth if all of its irreducible factors are of degree at most $Y$. We show that a ternary additive equation $a\,+\,b\,=\,c$ over $Y$-smooth polynomials has many solutions. As an application, if $S$ is the set of first $s$ primes in ${{\mathbf{F}}_{q}}[T]$ and $s$ is large, we prove that the $S$-unit equation $u\,+\,v\,=\,1$ has at least $\text{exp}\left( {{s}^{1/6-\in }}\,\text{log}\,\text{q} \right)$ solutions.
We prove that the exponent of distribution of $\unicode[STIX]{x1D70F}_{3}$ in arithmetic progressions can be as large as $\frac{1}{2}+\frac{1}{34}$, provided that the moduli is squarefree and has only sufficiently small prime factors. The tools involve arithmetic exponent pairs for algebraic trace functions, as well as a double $q$-analogue of the van der Corput method for smooth bilinear forms.
The fractional derivatives include nonlocal information and thus their calculation requires huge storage and computational cost for long time simulations. We present an efficient and high-order accurate numerical formula to speed up the evaluation of the Caputo fractional derivative based on the L2-1σ formula proposed in [A. Alikhanov, J. Comput. Phys., 280 (2015), pp. 424-438], and employing the sum-of-exponentials approximation to the kernel function appeared in the Caputo fractional derivative. Both theoretically and numerically, we prove that while applied to solving time fractional diffusion equations, our scheme not only has unconditional stability and high accuracy but also reduces the storage and computational cost.
We consider the distribution of the polygonal paths joining partial sums of classical Kloosterman sums $\text{Kl}_{p}(a)$, as $a$ varies over $\mathbf{F}_{p}^{\times }$ and as $p$ tends to infinity. Using independence of Kloosterman sheaves, we prove convergence in the sense of finite distributions to a specific random Fourier series. We also consider Birch sums, for which we can establish convergence in law in the space of continuous functions. We then derive some applications.
We prove character sum estimates for additive Bohr subsets modulo a prime. These estimates are analogous to the classical character sum bounds of Pólya–Vinogradov and Burgess. These estimates are applied to obtain results on recurrence $\bmod \,p$ by special elements.
Given two sets of elements of the finite field 𝔽q of q elements, we show that the product set contains an arithmetic progression of length k≥3 provided that k<p, where p is the characteristic of 𝔽q, and #𝒜#ℬ≥3q2d−2/k. We also consider geometric progressions in a shifted product set 𝒜ℬ+h, for f∈𝔽q, and obtain a similar result.
Our first result is a ‘sum-product’ theorem for subsets A of the finite field ${{\mathbb F}_p}$, p prime, providing a lower bound on $\max (|A+A|, |A\cdot A|)$. The second and main result provides new bounds on exponential sums
For a given elliptic curve $\mathbf{E}$, we obtain an upper bound on the discrepancy of sets of multiples ${{z}_{s}}G$ where ${{z}_{s}}$ runs through a sequence $Z\,=\,\left( {{z}_{1}},\ldots ,{{z}_{T}} \right)$ such that $k{{z}_{1}},\ldots ,k{{z}_{T}}$ is a permutation of ${{z}_{1}},\ldots ,{{z}_{T}}$, both sequences taken modulo $t$, for sufficiently many distinct values of $k$ modulo $t$.
We apply this result to studying an analogue of the power generator over an elliptic curve. These results are elliptic curve analogues of those obtained for multiplicative groups of finite fields and residue rings.
We extend to the setting of polynomials over a finite field certain estimates for short Kloosterman sums originally due to Karatsuba. Our estimates are then used to establish some uniformity of distribution results in the ring ${{\mathbb{F}}_{q}}\left[ x \right]\,/\,M\left( x \right)$ for collections of polynomials either of the form ${{f}^{-1}}{{g}^{-1}}$ or of the form ${{f}^{-1}}{{g}^{-1}}\,+\,afg$, where $f$ and $g$ are polynomials coprime to $M$ and of very small degree relative to $M$, and $a$ is an arbitrary polynomial. We also give estimates for short Kloosterman sums where the summation runs over products of two irreducible polynomials of small degree. It is likely that this result can be used to give an improvement of the Brun-Titchmarsh theorem for polynomials over finite fields.