We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We explore the regularity theory of optimal transport maps for costs satisfying a Ma–Trudinger–Wang condition, by viewing the graphs of the transport maps as maximal Lagrangian surfaces with respect to an appropriate pseudo-Riemannian metric on the product space. We recover the local regularity theory in two-dimensional manifolds.
We consider the growth of the convex viscosity solution of the Monge–Ampère equation $\det D^2u=1$ outside a bounded domain of the upper half space. We show that if u is a convex quadratic polynomial on the boundary $\{x_n=0\}$ and there exists some $\varepsilon>0$ such that $u=O(|x|^{3-\varepsilon })$ at infinity, then $u=O(|x|^2)$ at infinity. As an application, we improve the asymptotic result at infinity for viscosity solutions of Monge–Ampère equations in half spaces of Jia, Li and Li [‘Asymptotic behavior at infinity of solutions of Monge–Ampère equations in half spaces’, J. Differential Equations269(1) (2020), 326–348].
In this paper we study a normalized anisotropic Gauss curvature flow of strictly convex, closed hypersurfaces in the Euclidean space. We prove that the flow exists for all time and converges smoothly to the unique, strictly convex solution of a Monge-Ampère type equation and we obtain a new existence result of solutions to the Dual Orlicz-Minkowski problem for smooth measures, especially for even smooth measures.
We revisit the problem of approximating minimizers of certain convex functionals subject to a convexity constraint by solutions of fourth order equations of Abreu type. This approximation problem was studied in previous articles of Carlier–Radice (Approximation of variational problems with a convexity constraint by PDEs of Abreu type. Calc. Var. Partial Differential Equations58 (2019), no. 5, Art. 170) and the author (Singular Abreu equations and minimizers of convex functionals with a convexity constraint, arXiv:1811.02355v3, Comm. Pure Appl. Math., to appear), under the uniform convexity of both the Lagrangian and constraint barrier. By introducing a new approximating scheme, we completely remove the uniform convexity of both the Lagrangian and constraint barrier. Our analysis is applicable to variational problems motivated by the original 2D Rochet–Choné model in the monopolist's problem in Economics, and variational problems arising in the analysis of wrinkling patterns in floating elastic shells in Elasticity.
We prove that if two $C^{1,1}(\unicode[STIX]{x1D6FA})$ solutions of the second boundary value problem for the generated Jacobian equation intersect in $\unicode[STIX]{x1D6FA}$ then they are the same solution. In addition, we extend this result to $C^{2}(\overline{\unicode[STIX]{x1D6FA}})$ solutions intersecting on the boundary, via an additional convexity condition on the target domain.
In this paper, we study the global regularity for regular Monge-Ampère type equations associated with semilinear Neumann boundary conditions. By establishing a priori estimates for second order derivatives, the classical solvability of the Neumann boundary value problem is proved under natural conditions. The techniques build upon the delicate and intricate treatment of the standard Monge-Ampère case by Lions, Trudinger, and Urbas in 1986 and the recent barrier constructions and second derivative bounds by Jiang, Trudinger, and Yang for the Dirichlet problem. We also consider more general oblique boundary value problems in the strictly regular case.
We prove the existence of weak solutions of complex $m$-Hessian equations on compact Hermitian manifolds for the non-negative right-hand side belonging to $L^{p}$, $p>n/m$ ($n$ is the dimension of the manifold). For smooth, positive data the equation has recently been solved by Székelyhidi and Zhang. We also give a stability result for such solutions.
We introduce and study a multi-marginal optimal partial transport problem. Under a natural and sharp condition on the dominating marginals, we establish uniqueness of the optimal plan. Our strategy of proof establishes and exploits a connection with another novel problem, which we call the Monge–Kantorovich partial barycenter problem (with quadratic cost). This latter problem has a natural interpretation as a variant of the factories-and-mines description of optimal transport. We then turn our attention to various analytic properties of these two problems. Of particular interest, we show that monotonicity of the active marginals with respect to the amount $m$ of mass to be transported can fail, a surprising difference from the two-marginal case.
The regularity of solutions to optimal transportation problems has become a hot topic in current research. It is well known by now that the optimal measure may not be concentrated on the graph of a continuous mapping unless both the transportation cost and the masses transported satisfy very restrictive hypotheses (including sign conditions on the mixed fourth-order derivatives of the cost function). The purpose of this note is to show that in spite of this, the optimal measure is supported on a Lipschitz manifold, provided only that the cost is ${{C}^{2}}$ with non-singular mixed second derivative. We use this result to provide a simple proof that solutions to Monge's optimal transportation problem satisfy a change of variables equation almost everywhere.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.