We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper presents the current state of mathematical modelling of the electrochemical behaviour of lithium-ion batteries (LIBs) as they are charged and discharged. It reviews the models developed by Newman and co-workers, both in the cases of dilute and moderately concentrated electrolytes and indicates the modelling assumptions required for their development. Particular attention is paid to the interface conditions imposed between the electrolyte and the active electrode material; necessary conditions are derived for one of these, the Butler–Volmer relation, in order to ensure physically realistic solutions. Insight into the origin of the differences between various models found in the literature is revealed by considering formulations obtained by using different measures of the electric potential. Materials commonly used for electrodes in LIBs are considered and the various mathematical models used to describe lithium transport in them discussed. The problem of upscaling from models of behaviour at the single electrode particle scale to the cell scale is addressed using homogenisation techniques resulting in the pseudo-2D model commonly used to describe charge transport and discharge behaviour in lithium-ion cells. Numerical solution to this model is discussed and illustrative results for a common device are computed.
Consider the scattering of a time-harmonic acoustic incident wave by a bounded, penetrable, and isotropic elastic solid, which is immersed in a homogeneous compressible air or fluid. The paper concerns the numerical solution for such an acoustic-elastic interaction problem in three dimensions. An exact transparent boundary condition (TBC) is developed to reduce the problem equivalently into a boundary value problem in a bounded domain. The perfectly matched layer (PML) technique is adopted to truncate the unbounded physical domain into a bounded computational domain. The well-posedness and exponential convergence of the solution are established for the truncated PML problem by using a PML equivalent TBC. An a posteriori error estimate based adaptive finite element method is developed to solve the scattering problem. Numerical experiments are included to demonstrate the competitive behavior of the proposed method.
We study the exciton diffusion in organic semiconductors from a macroscopic viewpoint. In a unified way, we conduct the equivalence analysis between Monte-Carlo method and diffusion equation model for photoluminescence quenching and photocurrent spectrum measurements, in both the presence and the absence of Förster energy transfer effect. Connections of these two models to Stern-Volmer method and exciton-exciton annihilation method are also specified for the photoluminescence quenching measurement.
It is known that large time-stepping method are useful for simulating phase field models. In this work, an adaptive time-stepping strategy is proposed based on numerical energy stability and equi-distribution principle. The main idea is to use the energy variation as an indicator to update the time step, so that the resulting algorithm is free of user-defined parameters, which is different from several existing approaches. Some numerical experiments are presented to illustrate the effectiveness of the algorithms.
We consider an inverse problem of determining unknown coefficients for a one-dimensional analogue of radiative transport equation. We show that some combination of the unknown coefficients can be uniquely determined by giving pulse-like inputs at the boundary and observing the corresponding outputs. Our result can be applied for determination of absorption and scattering properties of an optically turbid medium if the radiative transport equation is appropriate for describing the propagation of light in the medium.
Darboux Wronskian formulas allow us to construct Darboux transformations, but Laplace transformations, which are Darboux transformations of order one, cannot be represented this way. It has been a long-standing problem to discover what other exceptions exist. In our previous work we proved that among transformations of total order one there are no other exceptions. Here we prove that for transformations of total order two there are no exceptions at all. We also obtain a simple explicit invariant description of all possible Darboux transformations of total order two.
We are concerned with a model of ionic polymer-metal composite (IPMC) materials that consists of a coupled system of the Poisson and Nernst-Planck equations, discretized by means of the finite element method (FEM). We show that due to the transient character of the problem it is efficient to use adaptive algorithms that are capable of changing the mesh dynamically in time. We also show that due to large qualitative and quantitative differences between the two solution components, it is efficient to approximate them on different meshes using a novel adaptive multimesh hp-FEM. The study is accompanied with numerous computations and comparisons of the adaptive multimesh hp-FEM with several other adaptive FEM algorithms.
The dual-phase-lag heat transfer model is employed to study the reflection phenomena of P and SV waves from a surface of a semi-infinite magneto-thermoelastic solid. The ratios of reflection coefficients to that of incident coefficients are obtained for P- and SV-wave cases. The results for partition of the energy for various values of the angle of incidence are computed numerically under the stress-free and rigidly fixed thermally insulated boundaries. The reflection coefficients are depending on the angle of incidence, magnetic field, phase lags and other material constants. Results show that the sum of energy ratios is unity at the interface. The results are discussed and depicted graphically.
The integration-by-parts methods introduced in this paper improve upon the $L^p$ estimates on transport densities given in the recent paper by L. De Pascale and A. Pratelli (Calc. Var. Partial Differential Equations 14 (2002) 249–274).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.