Let  $\mu $ be a finite positive Borel measure on
$\mu $ be a finite positive Borel measure on  $[0,1)$ and
$[0,1)$ and  $f(z)=\sum _{n=0}^{\infty }a_{n}z^{n} \in H(\mathbb {D})$. For
$f(z)=\sum _{n=0}^{\infty }a_{n}z^{n} \in H(\mathbb {D})$. For  $0<\alpha <\infty $, the generalized Cesàro-like operator
$0<\alpha <\infty $, the generalized Cesàro-like operator  $\mathcal {C}_{\mu ,\alpha }$ is defined by
$\mathcal {C}_{\mu ,\alpha }$ is defined by  $$ \begin{align*}\mathcal {C}_{\mu,\alpha}(f)(z)=\sum^\infty_{n=0}\left(\mu_n\sum^n_{k=0}\frac{\Gamma(n-k+\alpha)}{\Gamma(\alpha)(n-k)!}a_k\right)z^n, \ z\in \mathbb{D}, \end{align*} $$
$$ \begin{align*}\mathcal {C}_{\mu,\alpha}(f)(z)=\sum^\infty_{n=0}\left(\mu_n\sum^n_{k=0}\frac{\Gamma(n-k+\alpha)}{\Gamma(\alpha)(n-k)!}a_k\right)z^n, \ z\in \mathbb{D}, \end{align*} $$
where, for  $n\geq 0$,
$n\geq 0$,  $\mu _n$ denotes the nth moment of the measure
$\mu _n$ denotes the nth moment of the measure  $\mu $, that is,
$\mu $, that is,  $\mu _n=\int _{0}^{1} t^{n}d\mu (t)$.
$\mu _n=\int _{0}^{1} t^{n}d\mu (t)$.
For  $s>1$, let X be a Banach subspace of
$s>1$, let X be a Banach subspace of  $H(\mathbb {D})$ with
$H(\mathbb {D})$ with  $\Lambda ^{s}_{\frac {1}{s}}\subset X\subset \mathcal {B}$. In this article, for
$\Lambda ^{s}_{\frac {1}{s}}\subset X\subset \mathcal {B}$. In this article, for  $1\leq p <\infty $, we characterize the measure
$1\leq p <\infty $, we characterize the measure  $\mu $ for which
$\mu $ for which  $\mathcal {C}_{\mu ,\alpha }$ is bounded (resp. compact) from X into the analytic Besov space
$\mathcal {C}_{\mu ,\alpha }$ is bounded (resp. compact) from X into the analytic Besov space  $B_{p}$.
$B_{p}$.