We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We construct an fpqc gerbe $\mathcal {E}_{\dot {V}}$ over a global function field F such that for a connected reductive group G over F with finite central subgroup Z, the set of $G_{\mathcal {E}_{\dot {V}}}$-torsors contains a subset $H^{1}(\mathcal {E}_{\dot {V}}, Z \to G)$ which allows one to define a global notion of (Z-)rigid inner forms. There is a localization map $H^{1}(\mathcal {E}_{\dot {V}}, Z \to G) \to H^{1}(\mathcal {E}_{v}, Z \to G)$, where the latter parametrizes local rigid inner forms (cf. [8, 6]) which allows us to organize local rigid inner forms across all places v into coherent families. Doing so enables a construction of (conjectural) global L-packets and a conjectural formula for the multiplicity of an automorphic representation $\pi $ in the discrete spectrum of G in terms of these L-packets. We also show that, for a connected reductive group G over a global function field F, the adelic transfer factor $\Delta _{\mathbb {A}}$ for the ring of adeles $\mathbb {A}$ of F serving an endoscopic datum for G decomposes as the product of the normalized local transfer factors from [6].
Let p be a fixed prime number, and let F be a global function field with characteristic not equal to p. In this article, we shall study the variation properties of the Sylow p-subgroups of the even K-groups in a p-adic Lie extension of F. When the p-adic Lie extension is assumed to contain the cyclotomic $\mathbb {Z}_p$-extension of F, we obtain growth estimate of these groups. We also establish a duality between the direct limit and inverse limit of the even K-groups.
For every affine variety over a global function field, we show that the set of its points with coordinates in an arbitrary rank-one multiplicative subgroup of this function field satisfies the required property of weak approximation for finite sets of places of this function field avoiding arbitrarily given finitely many places.
Let $k = {\Bbb F}_q(t)$ be the rational function field with finite constant field and characteristic $p \geq 3$, and let K/k be a finite separable extension. For a fixed place v of k and an elliptic curve E/K which has ordinary reduction at all places of K extending v, we consider a canonical height pairing $\langle \phantom {x},\phantom {x}\! \rangle _v \colon E(K^{\rm {sep}}) \times E(K^{\rm {sep}}) \to {\Bbb C}_{v}^{\times }$ which is symmetric, bilinear and Galois equivariant. The pairing $\langle \phantom {x},\phantom {x}\! \rangle _\infty$ for the “infinite” place of k is a natural extension of the classical Néron–Tate height. For v finite, the pairing $\langle \phantom {x},\phantom {x}\! \rangle _v$ plays the role of global analytic p-adic heights. We further determine some hypotheses for the nondegeneracy of these pairings.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.