We consider the number of edge crossings in a random graph drawing generated by projecting a random geometric graph on some compact convex set
$W\subset \mathbb{R}^d$,
$d\geq 3$, onto a plane. The positions of these crossings form the support of a point process. We show that if the expected number of crossings converges to a positive but finite value, this point process converges to a Poisson point process in the Kantorovich–Rubinstein distance. We further show a multivariate central limit theorem between the number of crossings and a second variable called the stress that holds when the expected vertex degree in the random geometric graph converges to a positive finite value.