To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Building on our previous work on enriched universal algebra, we define a notion of enriched language consisting of function and relation symbols whose arities are objects of the base of enrichment $\mathcal {V}$. In this context, we construct atomic formulas and define the regular fragment of our enriched logic by taking conjunctions and existential quantification of those. We then characterize $\mathcal {V}$-categories of models of regular theories as enriched injectivity classes in the $\mathcal {V}$-category of structures. These notions rely on the choice of an orthogonal factorization system $(\mathcal {E},\mathcal {M})$ on $\mathcal {V}$ which will be used, in particular, to interpret relation symbols and existential quantification.
Any modality in homotopy type theory gives rise to an orthogonal factorization system of which the left class is stable under pullbacks. We show that there is a second orthogonal factorization system associated with any modality, of which the left class is the class of ○-equivalences and the right class is the class of ○-étale maps. This factorization system is called the modal reflective factorization system of a modality, and we give a precise characterization of the orthogonal factorization systems that arise as the modal reflective factorization system of a modality. In the special case of the n-truncation, the modal reflective factorization system has a simple description: we show that the n-étale maps are the maps that are right orthogonal to the map $${\rm{1}} \to {\rm{ }}{{\rm{S}}^{n + 1}}$$. We use the ○-étale maps to prove a modal descent theorem: a map with modal fibers into ○X is the same thing as a ○-étale map into a type X. We conclude with an application to real-cohesive homotopy type theory and remark how ○-étale maps relate to the formally etale maps from algebraic geometry.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.