Let  $G$ be a finite group and
$G$ be a finite group and  $\unicode[STIX]{x1D70E}=\{\unicode[STIX]{x1D70E}_{i}\mid i\in I\}$ some partition of the set of all primes
$\unicode[STIX]{x1D70E}=\{\unicode[STIX]{x1D70E}_{i}\mid i\in I\}$ some partition of the set of all primes  $\mathbb{P}$, that is,
$\mathbb{P}$, that is,  $\mathbb{P}=\bigcup _{i\in I}\unicode[STIX]{x1D70E}_{i}$ and
$\mathbb{P}=\bigcup _{i\in I}\unicode[STIX]{x1D70E}_{i}$ and  $\unicode[STIX]{x1D70E}_{i}\cap \unicode[STIX]{x1D70E}_{j}=\emptyset$ for all
$\unicode[STIX]{x1D70E}_{i}\cap \unicode[STIX]{x1D70E}_{j}=\emptyset$ for all  $i\neq j$. We say that
$i\neq j$. We say that  $G$ is
$G$ is  $\unicode[STIX]{x1D70E}$-primary if
$\unicode[STIX]{x1D70E}$-primary if  $G$ is a
$G$ is a  $\unicode[STIX]{x1D70E}_{i}$-group for some
$\unicode[STIX]{x1D70E}_{i}$-group for some  $i$. A subgroup
$i$. A subgroup  $A$ of
$A$ of  $G$ is said to be:
$G$ is said to be:  $\unicode[STIX]{x1D70E}$-subnormal in
$\unicode[STIX]{x1D70E}$-subnormal in $G$ if there is a subgroup chain
$G$ if there is a subgroup chain  $A=A_{0}\leq A_{1}\leq \cdots \leq A_{n}=G$ such that either
$A=A_{0}\leq A_{1}\leq \cdots \leq A_{n}=G$ such that either  $A_{i-1}\unlhd A_{i}$ or
$A_{i-1}\unlhd A_{i}$ or  $A_{i}/(A_{i-1})_{A_{i}}$ is
$A_{i}/(A_{i-1})_{A_{i}}$ is  $\unicode[STIX]{x1D70E}$-primary for all
$\unicode[STIX]{x1D70E}$-primary for all  $i=1,\ldots ,n$; modular in
$i=1,\ldots ,n$; modular in $G$ if the following conditions hold: (i)
$G$ if the following conditions hold: (i)  $\langle X,A\cap Z\rangle =\langle X,A\rangle \cap Z$ for all
$\langle X,A\cap Z\rangle =\langle X,A\rangle \cap Z$ for all  $X\leq G,Z\leq G$ such that
$X\leq G,Z\leq G$ such that  $X\leq Z$ and (ii)
$X\leq Z$ and (ii)  $\langle A,Y\cap Z\rangle =\langle A,Y\rangle \cap Z$ for all
$\langle A,Y\cap Z\rangle =\langle A,Y\rangle \cap Z$ for all  $Y\leq G,Z\leq G$ such that
$Y\leq G,Z\leq G$ such that  $A\leq Z$; and
$A\leq Z$; and  $\unicode[STIX]{x1D70E}$-quasinormal in
$\unicode[STIX]{x1D70E}$-quasinormal in $G$ if
$G$ if  $A$ is modular and
$A$ is modular and  $\unicode[STIX]{x1D70E}$-subnormal in
$\unicode[STIX]{x1D70E}$-subnormal in  $G$. We study
$G$. We study  $\unicode[STIX]{x1D70E}$-quasinormal subgroups of
$\unicode[STIX]{x1D70E}$-quasinormal subgroups of  $G$. In particular, we prove that if a subgroup
$G$. In particular, we prove that if a subgroup  $H$ of
$H$ of  $G$ is
$G$ is  $\unicode[STIX]{x1D70E}$-quasinormal in
$\unicode[STIX]{x1D70E}$-quasinormal in  $G$, then every chief factor
$G$, then every chief factor  $H/K$ of
$H/K$ of  $G$ between
$G$ between  $H^{G}$ and
$H^{G}$ and  $H_{G}$ is
$H_{G}$ is  $\unicode[STIX]{x1D70E}$-central in
$\unicode[STIX]{x1D70E}$-central in $G$, that is, the semidirect product
$G$, that is, the semidirect product  $(H/K)\rtimes (G/C_{G}(H/K))$ is
$(H/K)\rtimes (G/C_{G}(H/K))$ is  $\unicode[STIX]{x1D70E}$-primary.
$\unicode[STIX]{x1D70E}$-primary.