Inertial sedimentation of a cloud of cylinders released within a confined fluid-filled cell is experimentally investigated. Various cylinder numbers,
$N_c$, aspect ratios,
$\xi$, solid-to-fluid density ratios,
$\rho _c / \rho _{\!f}$, and settling velocities corresponding to moderate Reynolds numbers are examined. The parameters correspond to two distinct path regimes for isolated cylinders: oscillatory trajectories for higher-density cylinders and rectilinear sedimentation for lower-density cylinders. In both cases, we observe the formation of subgroups (termed objects of class
$N$) composed of
$N$ cylinders in contact, as well as their recombination due to splitting or merging. Depending on the parameters, specific distributions of class-
$N$ objects are found. In addition, beyond the formation of individual objects, large-scale vertical columnar structures emerge, made of densely packed objects and alternating regions of ascending and descending fluid. These structures, driven by complex interactions between local clustering and global flow organisation, which persist throughout the sedimentation process, are highly sensitive to
$\xi$. Despite its inner complex dynamics, the group is observed to sediment as a collective entity, with a constant velocity exceeding that of an isolated cylinder. This velocity may be predicted from multi-scale information. Fluctuating velocities of the objects are further analysed. Different mechanisms for horizontal and vertical components are identified. Horizontal fluctuations are related to intrinsic particle mobility, while vertical fluctuations are attributed to strong wakes and vertical streams. Both fluctuations are mainly influenced by the cylinders’ aspect ratio, which also affects the structural and spatial distribution of the objects.