To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given two rational maps $f,g: \mathbb {P}^1 \to \mathbb {P}^1$ of degree d over $\mathbb {C}$, DeMarco, Krieger, and Ye [Common preperiodic points for quadratic polynomials. J. Mod. Dyn.18 (2022), 363–413] have conjectured that there should be a uniform bound $B = B(d)> 0$ such that either they have at most B common preperiodic points or they have the same set of preperiodic points. We study their conjecture from a statistical perspective and prove that the average number of shared preperiodic points is zero for monic polynomials of degree $d \geq 6$ with rational coefficients. We also investigate the quantity $\liminf _{x \in \overline {\mathbb {Q}}} (\widehat {h}_f(x) + \widehat {h}_g(x) )$ for a generic pair of polynomials and prove both lower and upper bounds for it.
According to the André–Oort conjecture, an algebraic curve in Y (1)n that is not equal to a special subvariety contains only finitely many points which correspond to ann-tuple of elliptic curves with complex multiplication. Pink’s conjecture generalizes the André–Oort conjecture to the extent that if the curve is not contained in a special subvariety of positive codimension, then it is expected to meet the union of all special subvarieties of codimension two in only finitely many points. We prove this for a large class of curves in Y (1)n. When restricting to special subvarieties of codimension two that are not strongly special we obtain finiteness for all curves defined over . Finally, we formulate and prove a variant of the Mordell–Lang conjecture for subvarieties of Y (1)n.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.