Skip to main content Accessibility help
Hostname: page-component-7ccbd9845f-dxj8b Total loading time: 1.147 Render date: 2023-01-29T10:53:22.895Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

21 - Spherical and Chromatic Aberration Correction for Atomic-Resolution Liquid Cell Electron Microscopy

from Part III - Prospects

Published online by Cambridge University Press:  22 December 2016

Frances M. Ross
IBM T. J. Watson Research Center, New York
Get access


Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Scherzer, O., Über einige Fehler von Elektronenlinsen. Z. Phys., 101 (1936), 593603.CrossRefGoogle Scholar
Scherzer, O., The theoretical resolution limit of the electron microscope. J. Appl. Phys., 20 (1949), 2029.CrossRefGoogle Scholar
Coene, W. and Jansen, A. J., Image delocalisation and high resolution tranmission electron microscopic imaging with a field emission gun. Scanning Microsc. Suppl., 6 (1992), 379403.Google Scholar
Cervera Gontard, L., Dunin-Borkowski, R. E., Hÿtch, M. J. and Ozkaya, D., Delocalisation in images of Pt nanoparticles. J. Phys. Conf. Ser., 26 (2006), 292295.CrossRefGoogle Scholar
Coene, W. M. J., Thust, A., Op de Beeck, M. and van Dyck, D., Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy. Ultramicroscopy, 64 (1996), 109135.CrossRefGoogle Scholar
Thust, A., Coene, W. M. J., Op de Beeck, M. and van Dyck, D., Focal-series reconstruction in HRTEM: simulation studies on nonperiodic objects. Ultramicroscopy, 64 (1996), 211230.CrossRefGoogle Scholar
Kisielowski, C., Hetherington, C. J. D., Wang, Y. C. et al., Imaging columns of the light elements carbon, nitrogen and oxygen with sub angstrom resolution. Ultramicroscopy, 89 (2001), 243263.CrossRefGoogle ScholarPubMed
Cervera Gontard, L., Chang, L.-Y., Hetherington, C. J. D. et al., Aberration-corrected imaging of active sites on industrial catalyst nanoparticles. Angew. Chem., 46 (2007), 36833685.CrossRefGoogle Scholar
Haider, M., Rose, H., Uhlemann, S. et al., A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy, 75 (1998), 5360.CrossRefGoogle Scholar
Lentzen, M., Jahnen, B., Jia, C. L. et al., High-resolution imaging with an aberration-corrected transmission electron microscope. Ultramicroscopy, 92 (2002), 233242.CrossRefGoogle ScholarPubMed
Jia, C. L., Lentzen, M. and Urban, K., Atomic-resolution imaging of oxygen in perovskite ceramics. Science, 299 (2003), 870873.CrossRefGoogle ScholarPubMed
Jia, C. L., Mi, S. B., Urban, K. et al., Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater., 7 (2008), 5761.CrossRefGoogle ScholarPubMed
Jia, C. L., Houben, L., Thust, A. and Barthel, J., On the benefit of the negative-spherical-aberration imaging technique for quantitative HRTEM. Ultramicroscopy, 110 (2010), 500505.CrossRefGoogle Scholar
Jia, C. L., Barthel, J., Gunkel, F. et al., Atomic-scale measurement of structure and chemistry of a single-unit-cell layer of LaAlO3 embedded in SrTiO3. Microsc. Microanal., 19 (2013), 310318.CrossRefGoogle ScholarPubMed
Jia, C. L., Mi, S.-B., Barthel, J. et al., Determination of the 3D shape of a nanoscale crystal with atomic resolution from a single image. Nat. Mater., 13 (2014), 10441049.CrossRefGoogle ScholarPubMed
Barthel, J. and Thust, A., Aberration measurement in HRTEM: implementation and diagnostic use of numerical procedures for the highly precise recognition of diffractogram patterns. Ultramicroscopy, 111 (2010), 2746.CrossRefGoogle ScholarPubMed
Barthel, J. and Thust, A., On the optical stability of high-resolution transmission electron microscopes. Ultramicroscopy, 134 (2013), 617.CrossRefGoogle ScholarPubMed
Hansen, T. W., Wagner, J. B. and Dunin-Borkowski, R. E., Aberration corrected and monochromated environmental transmission electron microscopy: challenges and prospects for materials science. Mater. Sci. Technol., 26 (2010), 13381344.CrossRefGoogle Scholar
Egerton, R. F., Electron Energy-Loss Spectroscopy in the Electron Microscope (New York: Springer, 2011).CrossRefGoogle Scholar
Boothroyd, C. B., Moreno, M. S., Duchamp, M. et al., Atomic resolution imaging and spectroscopy of barium atoms and functional groups on graphene oxide. Ultramicroscopy, 145 (2014), 6673.CrossRefGoogle ScholarPubMed
Zach, J., Chromatic correction: a revolution in electron microscopy? Phil. Trans. R. Soc. A, 367 (2009), 36993707.CrossRefGoogle ScholarPubMed
Rose, H., Future trends in aberration corrected electron microscopy. Phil. Trans. R. Soc. A, 367 (2009), 38093823.CrossRefGoogle ScholarPubMed
Kabius, B., Hartel, P., Haider, M. et al., First application of CC-corrected imaging for high-resolution and energy-filtered TEM. J. Electron Microsc., 58 (2009), 147155.CrossRefGoogle ScholarPubMed
Leary, R. and Brydson, R., Chromatic aberration correction: the next step in electron microscopy. Adv. Imagi. Electron Phys., 165 (2011), 73130.CrossRefGoogle Scholar
Haider, M., Hartel, P., Müller, H., Uhlemann, S. and Zach, J., Information transfer in a TEM corrected for spherical and chromatic aberration. Microsc. Microanal., 16 (2010), 393408.CrossRefGoogle Scholar
Rose, H., Outline of an ultracorrector compensating for all primary chromatic and geometrical aberrations of charged-particle lenses. Nucl. Instrum. Methods Phys. Res. A, 519 (2004), 1227.CrossRefGoogle Scholar
Rose, H., Prospects for aberration-free electron microscopy. Ultramicroscopy, 103 (2005), 16.CrossRefGoogle ScholarPubMed
Haider, M., Müller, H., Uhlemann, S. et al., Prerequisites for a Cc/Cs-corrected ultrahigh-resolution TEM. Ultramicroscopy, 108 (2008), 167178.CrossRefGoogle ScholarPubMed
Uhlemann, S., Müller, H., Hartel, P., Zach, J. and Haider, M., Thermal magnetic field noise limits resolution in transmission electron microscopy. Phys. Rev. Lett., 111 (2013), 046101.CrossRefGoogle ScholarPubMed
Urban, K. W., Mayer, J., Jinschek, J. R. et al., Achromatic elemental mapping beyond the nanoscale in the transmission electron microscope. Phys. Rev. Lett., 110 (2013), 185507.CrossRefGoogle ScholarPubMed
Forbes, B. D., Houben, L., Mayer, J., Dunin-Borkowski, R. E. and Allen, L. J., Elemental mapping in achromatic atomic-resolution energy-filtered transmission electron microscopy. Ultramicroscopy, 147 (2014), 98105.CrossRefGoogle ScholarPubMed
Baudoin, J. P., Jinschek, J. R., Boothroyd, C. B., Dunin-Borkowski, R. E. and de Jonge, N., Chromatic aberration-corrected tilt series transmission electron microscopy of nanoparticles in a whole mount macrophage cell. Microsc. Microanal., 19 (2013), 814821.CrossRefGoogle Scholar
Reimer, L. and Ross-Messemer, M., Top–bottom effect in energy-selecting TEM. Ultramicroscopy, 21 (1987), 385388.CrossRefGoogle Scholar
Reimer, L. and Gentsch, P., Superposition of chromatic error and beam broadening in TEM of thick carbon and organic specimens. Ultramicroscopy, 1 (1975), 15.CrossRefGoogle Scholar
Gentsch, P., Gilde, H. and Reimer, L., Measurement of the top–bottom effect in scanning transmission electron microscopy of thick amorphous specimens. J. Microsc., 100 (1974), 8192.CrossRefGoogle Scholar
Sousa, A. A., Hohmann-Marriott, M. F., Zhang, G. and Leapman, R. D., Monte Carlo electron-trajectory simulations in bright-field and dark-field STEM: implications for tomography of thick biological sections. Ultramicroscopy, 109 (2009), 213221.CrossRefGoogle ScholarPubMed
Demers, H., Ramachandra, R., Drouin, D. and de Jonge, N., The probe profile and lateral resolution of scanning transmission electron microscopy of thick specimens. Microsc. Microanal., 18 (2012), 582590.CrossRefGoogle ScholarPubMed
Hyun, J. K., Ercius, P. and Muller, D. A., Beam spreading and spatial resolution in thick organic specimens. Ultramicroscopy, 109 (2008), 17.CrossRefGoogle ScholarPubMed
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats