Skip to main content
  • Print publication year: 2016
  • Online publication date: December 2016

21 - Spherical and Chromatic Aberration Correction for Atomic-Resolution Liquid Cell Electron Microscopy

from Part III - Prospects
Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Liquid Cell Electron Microscopy
  • Online ISBN: 9781316337455
  • Book DOI:
Please enter your name
Please enter a valid email address
Who would you like to send this to *
1.Scherzer, O., Über einige Fehler von Elektronenlinsen. Z. Phys., 101 (1936), 593603.
2.Scherzer, O., The theoretical resolution limit of the electron microscope. J. Appl. Phys., 20 (1949), 2029.
3.Coene, W. and Jansen, A. J., Image delocalisation and high resolution tranmission electron microscopic imaging with a field emission gun. Scanning Microsc. Suppl., 6 (1992), 379403.
4.Cervera Gontard, L., Dunin-Borkowski, R. E., Hÿtch, M. J. and Ozkaya, D., Delocalisation in images of Pt nanoparticles. J. Phys. Conf. Ser., 26 (2006), 292295.
5.Coene, W. M. J., Thust, A., Op de Beeck, M. and van Dyck, D., Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy. Ultramicroscopy, 64 (1996), 109135.
6.Thust, A., Coene, W. M. J., Op de Beeck, M. and van Dyck, D., Focal-series reconstruction in HRTEM: simulation studies on nonperiodic objects. Ultramicroscopy, 64 (1996), 211230.
7.Kisielowski, C., Hetherington, C. J. D., Wang, Y. C. et al., Imaging columns of the light elements carbon, nitrogen and oxygen with sub angstrom resolution. Ultramicroscopy, 89 (2001), 243263.
8.Cervera Gontard, L., Chang, L.-Y., Hetherington, C. J. D. et al., Aberration-corrected imaging of active sites on industrial catalyst nanoparticles. Angew. Chem., 46 (2007), 36833685.
9.Haider, M., Rose, H., Uhlemann, S. et al., A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy, 75 (1998), 5360.
10.Lentzen, M., Jahnen, B., Jia, C. L. et al., High-resolution imaging with an aberration-corrected transmission electron microscope. Ultramicroscopy, 92 (2002), 233242.
11.Jia, C. L., Lentzen, M. and Urban, K., Atomic-resolution imaging of oxygen in perovskite ceramics. Science, 299 (2003), 870873.
12.Jia, C. L., Mi, S. B., Urban, K. et al., Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater., 7 (2008), 5761.
13.Jia, C. L., Houben, L., Thust, A. and Barthel, J., On the benefit of the negative-spherical-aberration imaging technique for quantitative HRTEM. Ultramicroscopy, 110 (2010), 500505.
14.Jia, C. L., Barthel, J., Gunkel, F. et al., Atomic-scale measurement of structure and chemistry of a single-unit-cell layer of LaAlO3 embedded in SrTiO3. Microsc. Microanal., 19 (2013), 310318.
15.Jia, C. L., Mi, S.-B., Barthel, J. et al., Determination of the 3D shape of a nanoscale crystal with atomic resolution from a single image. Nat. Mater., 13 (2014), 10441049.
16.Barthel, J. and Thust, A., Aberration measurement in HRTEM: implementation and diagnostic use of numerical procedures for the highly precise recognition of diffractogram patterns. Ultramicroscopy, 111 (2010), 2746.
17.Barthel, J. and Thust, A., On the optical stability of high-resolution transmission electron microscopes. Ultramicroscopy, 134 (2013), 617.
18.Hansen, T. W., Wagner, J. B. and Dunin-Borkowski, R. E., Aberration corrected and monochromated environmental transmission electron microscopy: challenges and prospects for materials science. Mater. Sci. Technol., 26 (2010), 13381344.
19.Egerton, R. F., Electron Energy-Loss Spectroscopy in the Electron Microscope (New York: Springer, 2011).
20.Boothroyd, C. B., Moreno, M. S., Duchamp, M. et al., Atomic resolution imaging and spectroscopy of barium atoms and functional groups on graphene oxide. Ultramicroscopy, 145 (2014), 6673.
21.Zach, J., Chromatic correction: a revolution in electron microscopy? Phil. Trans. R. Soc. A, 367 (2009), 36993707.
22.Rose, H., Future trends in aberration corrected electron microscopy. Phil. Trans. R. Soc. A, 367 (2009), 38093823.
23.Kabius, B., Hartel, P., Haider, M. et al., First application of CC-corrected imaging for high-resolution and energy-filtered TEM. J. Electron Microsc., 58 (2009), 147155.
24.Leary, R. and Brydson, R., Chromatic aberration correction: the next step in electron microscopy. Adv. Imagi. Electron Phys., 165 (2011), 73130.
25.Haider, M., Hartel, P., Müller, H., Uhlemann, S. and Zach, J., Information transfer in a TEM corrected for spherical and chromatic aberration. Microsc. Microanal., 16 (2010), 393408.
26.Rose, H., Outline of an ultracorrector compensating for all primary chromatic and geometrical aberrations of charged-particle lenses. Nucl. Instrum. Methods Phys. Res. A, 519 (2004), 1227.
27.Rose, H., Prospects for aberration-free electron microscopy. Ultramicroscopy, 103 (2005), 16.
28.Haider, M., Müller, H., Uhlemann, S. et al., Prerequisites for a Cc/Cs-corrected ultrahigh-resolution TEM. Ultramicroscopy, 108 (2008), 167178.
29.Uhlemann, S., Müller, H., Hartel, P., Zach, J. and Haider, M., Thermal magnetic field noise limits resolution in transmission electron microscopy. Phys. Rev. Lett., 111 (2013), 046101.
30.Urban, K. W., Mayer, J., Jinschek, J. R. et al., Achromatic elemental mapping beyond the nanoscale in the transmission electron microscope. Phys. Rev. Lett., 110 (2013), 185507.
31.Forbes, B. D., Houben, L., Mayer, J., Dunin-Borkowski, R. E. and Allen, L. J., Elemental mapping in achromatic atomic-resolution energy-filtered transmission electron microscopy. Ultramicroscopy, 147 (2014), 98105.
32.Baudoin, J. P., Jinschek, J. R., Boothroyd, C. B., Dunin-Borkowski, R. E. and de Jonge, N., Chromatic aberration-corrected tilt series transmission electron microscopy of nanoparticles in a whole mount macrophage cell. Microsc. Microanal., 19 (2013), 814821.
33.Reimer, L. and Ross-Messemer, M., Top–bottom effect in energy-selecting TEM. Ultramicroscopy, 21 (1987), 385388.
34.Reimer, L. and Gentsch, P., Superposition of chromatic error and beam broadening in TEM of thick carbon and organic specimens. Ultramicroscopy, 1 (1975), 15.
35.Gentsch, P., Gilde, H. and Reimer, L., Measurement of the top–bottom effect in scanning transmission electron microscopy of thick amorphous specimens. J. Microsc., 100 (1974), 8192.
36.Sousa, A. A., Hohmann-Marriott, M. F., Zhang, G. and Leapman, R. D., Monte Carlo electron-trajectory simulations in bright-field and dark-field STEM: implications for tomography of thick biological sections. Ultramicroscopy, 109 (2009), 213221.
37.Demers, H., Ramachandra, R., Drouin, D. and de Jonge, N., The probe profile and lateral resolution of scanning transmission electron microscopy of thick specimens. Microsc. Microanal., 18 (2012), 582590.
38.Hyun, J. K., Ercius, P. and Muller, D. A., Beam spreading and spatial resolution in thick organic specimens. Ultramicroscopy, 109 (2008), 17.