Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T22:54:25.783Z Has data issue: false hasContentIssue false

12 - The CO2 Cycle

Published online by Cambridge University Press:  05 July 2017

Robert M. Haberle
Affiliation:
NASA Ames Research Center
R. Todd Clancy
Affiliation:
Space Science Institute, Boulder, Colorado
François Forget
Affiliation:
Laboratoire de Météorologie Dynamique, Paris
Michael D. Smith
Affiliation:
NASA-Goddard Space Flight Center
Richard W. Zurek
Affiliation:
NASA-Jet Propulsion Laboratory, California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharonson, O. (2004) Sublimation at the base of a seasonal CO2 slab on Mars, 35th Lunar and Planetary Science Conference, March 15–19, 2004, League City, Texas, abstract no. 1918.Google Scholar
Aharonson, O., Zuber, M. T., Smith, D. E., et al. (2004) Depth, distribution, and density of CO2 deposition on Mars, J. Geophys. Res., 109, E05004, doi:10.1029/2003JE002223.CrossRefGoogle Scholar
Antoniadi, E. M. (1930) The Planet Mars, Trans. Moore, Patrick, Devon, UK: Keith Reid Ltd., 1975.Google Scholar
Appéré, T., Schmitt, B., Langevin, Y., et al. (2011) Winter and spring evolution of northern seasonal deposits on Mars from OMEGA on Mars Express, J. Geophys. Res., 116, E5, E05001.Google Scholar
Baker, V. R. (1979) Erosional processes in channelized water flows on Mars, Journal of Geophysical Research, 84, 79857993.Google Scholar
Bandfield, J. L. and Feldman, W. C. (2008) Martian high latitude permafrost depth and surface cover thermal inertia distributions, J. Geophys. Res., 113, E08001.Google Scholar
Bandfield, J. L., Glotch, T. D., Christensen, P. R. (2003) Spectroscopic identification of carbonate minerals in the Martian dust, Science, 301, 5636, 10841087.Google Scholar
Banks, M. E., Byrne, S., Galla, K., et al. (2010) Crater population and resurfacing of the Martian north polar layered deposits, J. Geophys. Res., 115, E8, E08006.Google Scholar
Barker, E. S., Schorn, R. A., Woszczyk, A., et al. (1970) Mars: detection of atmospheric water vapor during the southern hemisphere spring and summer season, Science, 170, 3964, 13081310.Google Scholar
Bell, J. F., Wolff, M. J., Malin, M. C., et al. (2009) Mars Reconnaissance Orbiter Mars Color Imager (MARCI): instrument description, calibration, and performance, J. Geophys. Res., 114, E8, CiteID E08S92.Google Scholar
Benson, J. L. and James, P. B. (2005) Yearly comparisons of the Martian polar caps: 1999–2003 Mars Orbiter Camera observations, Icarus, 174, 513523, doi:10.1016/j.icarus.2004.08.025.Google Scholar
Benson, J., Kass, D. M., Kleinböhl, A., et al. (2010) Mars’ south polar hood as observed by the Mars Climate Sounder, J. Geophys. Res., 115, E12015, doi:10.1029/2009JE003554.CrossRefGoogle Scholar
Benson, J. L., Kass, D. M., Kleinböhl, A. (2011) Mars’ north polar hood as observed by the Mars Climate Sounder, J. Geophys. Res., 116, E3, E03008.Google Scholar
Bertaux, J.-L., Fonteyn, D., Korablev, O., et al. (2000) The study of the Martian atmosphere from top to bottom with SPICAM light on Mars Express, Planetary and Space Science, 48, 12–14, 13031320.CrossRefGoogle Scholar
Bibring, J.-P., Langevin, Y., Poulet, F., et al. (2004) Perennial water ice identified in the South polar cap of Mars, Nature, 428, 627–30.Google Scholar
Bibring, J.-P., Langevin, Y., Gendrin, A., et al. (2005) Mars surface diversity as revealed by the OMEGA/Mars Express observations, Science, 307, 15761581, doi:10.1126/science.1108806.Google Scholar
Blackburn, D. G., Bryson, K. L., Chevrier, V. F., et al. (2010) Sublimation kinetics of CO2 ice on Mars, Planetary and Space Science, 58(5), 780791. doi:10.1016/j.pss.2009.12.004Google Scholar
Blunck, J., (1977) Mars and Its Satellites: A Detailed Commentary on the Nomenclature, Exposition Press, Hicksville, N.Y.Google Scholar
Blunck, J., (1982) Mars and Its Satellites: A Detailed Commentary on the Nomenclature, 2nd edn., Exposition Press, Hicksville, NY.Google Scholar
Bonev, B. P., James, P. B., Bjorkman, J. E., and Wolff, M. J. (2002) Regression of the Mountains of Mitchel polar ice after the onset of a global dust storm on Mars, Geophys. Res. Lett., 29, 21, 2017, doi:10.1029/2002GL015458.Google Scholar
Bonev, B. P., Hansen, G. B., Glenar, D. A., et al. (2008) Albedo models for the residual south polar cap on Mars: implications for the stability of the cap under near-perihelion global dust storm conditions, Planetary and Space Science, 56, 2, 181193.Google Scholar
Boynton, W. V., Feldman, W. C., Squyres, S. W., et al. (2002) Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits, Science, 297, 5578, 8185.Google Scholar
Boynton, W., Feldman, W., Mitrofanov, I., et al. (2004) The Mars Odyssey gamma-ray spectrometer instrument suite, Space Science Reviews, 110, 1, 3783.Google Scholar
Bridges, N. T., Ayoub, F., Avouac, J.-P., et al. (2012) Earth-like sand fluxes on Mars, Nature, 485, 7398, 339342.Google Scholar
Briggs, G. A. (1974) The nature of the residual Martian polar caps, Icarus, 23, 167191.Google Scholar
Brown, A. J., Calvin, W. M., McGuire, P. C., et al. (2010a) Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) south polar mapping: first Mars year of observations, J. Geophys. Res., 115, E00D13, doi:10.1029/2009JE003333.Google Scholar
Brown, A. J., Hook, S. J., Baldridge, A. M., et al. (2010b) Hydrothermal formation of clay–carbonate alteration assemblages in the Nili Fossae region of Mars, Earth and Planetary Science Letters, 297, 174182.Google Scholar
Brown, A. J., Calvin, W. M., and Murchie, S. L. (2012) Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) north polar springtime recession mapping: first 3 Mars years of observations, J. Geophys. Res., 117, E00J20.CrossRefGoogle Scholar
Brown, A. J., Michaels, T. I., Byrne, S., et al. (2014) The case for a modern multiwavelength, polarization-sensitive LIDAR in orbit around Mars, Journal of Quantitative Spectroscopy and Radiative Transfer, 153, 131143.Google Scholar
Byrne, S. (2009) The polar deposits of Mars, Annual Review of Earth and Planetary Sciences, 37, 1, 535560.Google Scholar
Byrne, S. and Ingersoll, I. (2003) A Sublimation Model for Martian South Polar Ice Features, Science, 299, Issue 5609, 10511053.Google Scholar
Byrne, S., Zuber, M. T., and Neumann, G. A. (2008) Interannual and seasonal behavior of Martian residual ice-cap albedo, Planetary and Space Science, 56, 2, 194211.CrossRefGoogle Scholar
Cabrol, N. A., Grin, E. A., Fike, D. (2002) Gusev Crater: a landing site for MER A, in 33rd Annual Lunar and Planetary Science Conference, March 11–15, Houston, Texas, abstract no. 1142.Google Scholar
Carr, M. H. (1979) Formation of Martian flood features by release of water from confined aquifers, Journal of Geophysical Research, 84, 29953007.Google Scholar
Carr, M. (1983) Stability of streams and lakes on Mars, Icarus, 56, 476495.Google Scholar
Chamberlain, T. E., Cole, H. L., Dutton, R. G., et al. (1976) Atmospheric measurements on Mars: the Viking meteorology experiment, American Meteorological Society Bulletin, 57, 10941104. doi:10.1175/1520-0477(1976)057.Google Scholar
Christensen, P. R., Anderson, D. L., Chase, S. C., et al. (1992) Thermal emission spectrometer experiment – Mars Observer mission, J. Geophys. Res., 97, E5, 77197734.Google Scholar
Christensen, P. R., Jakosky, B. M., Kieffer, H. H., et al. (2004) The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission, Space Science Reviews, 110, 1, 85130.Google Scholar
Clancy, R. T., Sandor, B. J., Wolff, M. J., et al. (2000) An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere, J. Geophys. Res., 105, E4, 95539572.Google Scholar
Clancy, R. T., Sandor, B. J., Moriarty-Schieven, G. H. (2004) A measurement of the 362 GHz absorption line of Mars atmospheric H2O2, Icarus, 168, 1, 116121, doi:10.1016/j.icarus.2003.12.003.Google Scholar
Clancy, R. T., Wolff, M. J., Whitney, B. A., et al. (2007) Mars equatorial mesospheric clouds: global occurrence and physical properties from Mars Global Surveyor Thermal Emission Spectrometer and Mars Orbiter Camera limb observations, J. Geophys. Res, 112, E4, CiteID E04004, doi:10.1029/2006JE002805.Google Scholar
Clifford, S. M., Yoshikawa, K., Byrne, S., et al. (2013) Introduction to the fifth Mars Polar Science special issue: key questions, needed observations, and recommended investigations, Icarus, 225, 2, 864868.Google Scholar
Colaprete, A. and Toon, O. B. (2002) Carbon dioxide snow storms during the polar night on Mars, J. Geophys. Res. (Planets), 107, E7, 5-15-16, doi:10.1029/2001JE001758.Google Scholar
Colaprete, A., Barnes, J. R., Haberle, R. M., et al. (2005) Albedo of the south pole on Mars determined by topographic forcing of atmosphere dynamics, Nature 435, 184–8.Google Scholar
Colaprete, A., Barnes, J. R., Haberle, R. M., and Montmessin, F. (2008) CO2 clouds, CAPE and convection on Mars: observations and general circulation modeling. Planetary and Space Science 56, 2, 150180.Google Scholar
Conrath, B., Curran, R., Hanel, R., et al. (1973) Atmospheric and surface properties of Mars obtained by infrared spectroscopy on Mariner 9, Journal of Geophysical Research, 78, 20, 42674278.Google Scholar
Cornwall, C. and Titus, T. N. (2009) Spatial and temporal distributions of Martian north polar cold spots before, during, and after the global dust storm of 2001, J. Geophys. Res., 114, E2, CiteID E02003.Google Scholar
Cornwall, C.; Titus, T. N. (2010) A comparison of Martian north and south polar cold spots and the long-term effects of the 2001 global dust storm, J. Geophys. Res., 115, E6, CiteID E06011.Google Scholar
Cull, S., Arvidson, R. E., Mellon, M., et al. (2010a) Seasonal H2O and CO2 ice cycles at the Mars Phoenix landing site: 1. Prelanding CRISM and HiRISE observations, J. Geophys. Res, 115, 1, CiteID E00D16.Google Scholar
Cull, S., Arvidson, R. E., Morris, R. V., et al. (2010b) Seasonal ice cycle at the Mars Phoenix landing site: 2. Postlanding CRISM and ground observations, J. Geophys. Res., 115, 1, E00E19.Google Scholar
Cushing, G. and Titus, T. (2008) MGS-TES thermal inertia study of the Arsia Mons caldera, J. Geophys. Res., 113, E6, E06006.Google Scholar
Davies, D. W.; Farmer, C. B.; Laporte, D. D. (1977) Behavior of volatiles in Mars’ polar areas – a model incorporating new experimental data, J. Geophys. Res., 82, 38153822.Google Scholar
de Villiers, S., Nermoen, A., Jamtveit, B., et al. (2012) Formation of Martian araneiforms by gas-driven erosion of granular material, Geophys. Res. Lett., 39, L13204, doi:10.1029/2012GL052226.Google Scholar
Diniega, S., Byrne, S., Bridges, N. T., et al. (2010) Seasonality of present-day Martian dune-gully activity, Geology, 38, 11, 10471050.Google Scholar
Diniega, S., Hansen, C. J., McElwaine, J. N., et al. (2013) A new dry hypothesis for the formation of Martian linear gullies, Icarus, 225, 1, 526537.Google Scholar
Ditteon, R. and Kieffer, H. H. (1979) Optical properties of solid CO2: application to Mars, J. Geophys. Res., 84, 82948300, doi:10.1029/JB084iB14p08294.Google Scholar
Douté, S., Schmitt, B., Langevin, Y., Bibring, J.-P., et al. (2007) South pole of Mars: nature and composition of the icy terrains from Mars Express OMEGA observations, Planet. Space Sci., 55, 113133.Google Scholar
Dundas, C. M., McEwen, A. S., Diniega, S., et al. (2010) New and recent gully activity on Mars as seen by HiRISE, Geophys. Res. Lett., 37, 7, CiteID L07202.Google Scholar
Durham, W. B., Kirby, S. H., and Stern, L. A. (1999) Steady-state flow of solid CO2: preliminary results, Geophys. Res. Lett., 26, 34933496.Google Scholar
Ehlmann, B. L., Mustard, J. F., Murchie, S. L., et al. (2008) Orbital identification of carbonate-bearing rocks on Mars, Science, 322, 18281832.Google Scholar
Ehlmann, B. L., Mustard, J. F., Murchie, S. L., et al. (2011) Subsurface water clay mineral formation during the early history of Mars, Nature, 479, 5360.Google Scholar
Eluszkiewicz, J., Moncet, J.-L., Shephard, M. W., et al. (2008) Atmospheric and surface retrievals in the Mars polar regions from the Thermal Emission Spectrometer measurements, J. Geophys. Res., 113, E10, E10010.Google Scholar
Fanale, F. P., and Salvail, J. R. (1994) Quasi-periodic atmosphere–regolith–cap CO2 redistribution in the Martian past, Icarus, 111, 2, 305316.Google Scholar
Feldman, W. C., Boynton, W. V., Tokar, R. L., et al. (2002) Global distribution of neutrons from Mars: results from Mars Odyssey, Science 297, 5578, 7578, doi:10.1126/science.1073541.Google Scholar
Feldman, W., Prettyman, T., Boynton, W., et al. (2003) CO2 frost cap thickness on Mars during northern winter and spring, J. Geophys. Res., 108, E9, 5103.Google Scholar
Feldman, W. C., Prettyman, T. H., Maurice, S., et al. (2004) Global distribution of near-surface hydrogen on Mars, J. Geophys. Res., 109, E09006, doi:10.1029/2003JE002160.Google Scholar
Fenton, L. K., Geissler, P. E., and Haberle, R. M. (2007) Global warming and climate forcing by recent albedo changes on Mars, Nature, 446, 7136, 646649.Google Scholar
Fischbacher, G. E., Martin, L. J., and Baum, W. A. (1969) Martian Polar Cap Boundaries. Final Report A, Contract 951547, Jet Propulsion Laboratory, Pasadena, CA. Planetary Research Center, Lowell Observatory, Flagstaff, AZ.Google Scholar
Folkner, W. M., Yoder, C. F., Yuan, D. N., Standish, E. M., Preston, R. A. (1997) Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder, Science, 278, 5344, 1749.Google Scholar
Forget, F. and Pollack, J. B. (1996) Thermal infrared observations of the condensing Martian polar caps: CO2 ice temperatures and radiative budget, J. Geophys. Res., 101, E7, 1686516880.Google Scholar
Forget, F., Hansen, G. B., Pollack, J. B. (1995) Low brightness temperatures of Martian polar caps: CO2 clouds or low surface emissivity? J. Geophys. Res., 100, E10, 2121921234.Google Scholar
Forget, F., Hourdin, F., and Talagrand, O. (1998) CO2 Snowfall on Mars: simulation with a general circulation model, Icarus, 131, 2, 302316.Google Scholar
Forget, F., Hourdin, F., Fournier, R., et al. (1999) Improved general circulation models of the Martian atmosphere from the surface to above 80 km, J. Geophys. Res., Planets, 104(E10), 2415524175.Google Scholar
Forget, F., Spiga, A., Dolla, B., et al. (2007) Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 1. Retrieval method, J. Geophys. Res., 112, E8, E08S15.Google Scholar
Forget, F., Montmessin, F., Bertaux, J.-L., et al. (2009) The density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM, J. Geophys. Res., 114, E01004 doi:10.1029/2008JE003086.Google Scholar
François, L. M., Walker, J. C. G., Kuhn, W. R. (1990) A numerical simulation of climate changes during the obliquity cycle on Mars, J. Geophys. Res., 95, 1476114778.Google Scholar
Geissler, P. E. (2005) Three decades of Martian surface changes, J. Geophys. Res., 110, E2, E02001.Google Scholar
Giuranna, M., Formisano, V., Grassi, D. and Maturilli, A. (2007a) Tracking the edge of the south seasonal polar cap of Mars, Planetary and Space Science, 55, 10, 13191327.Google Scholar
Giuranna, M., Hansen, G., Formisano, V., et al. (2007b) Spatial variability, composition and thickness of the seasonal north polar cap of Mars in mid-spring, Planetary and Space Science, 55, 13281345.Google Scholar
Giuranna, M., Grassi, D.; Formisano, V., et al. (2008) PFS/MEX observations of the condensing CO2 south polar cap of Mars, Icarus, 197, 386402.Google Scholar
Glandorf, D., Colaprete, A., Toon, O. B., and Tolbert, M. (2002) CO2 snow on Mars and early Earth, Icarus, 160, 6672.Google Scholar
Gomez-Elvira, J., Armiens, C., Castañer, L., et al. (2012) REMS: the environmental sensor suite for the Mars Science Laboratory Rover, Space Sci. Rev., 170, 583640, doi:10.1007/s11214-012-9921-1.Google Scholar
González-Galindo, F., Määttänen, A., Forget, F., and Spiga, A. (2011) The Martian mesosphere as revealed by CO2 cloud observations and General Circulation Modeling, Icarus, 216, 1022.Google Scholar
Guo, X., Lawson, W. G., Richardson, M. I., Toigo, A. (2009) Fitting the Viking Lander surface pressure cycle with a Mars General Circulation Model, J. Geophys. Res, 114, Issue E7, CiteID E07006.Google Scholar
Haas, W. H. (2003) Flashes on Mars observed in 1937 and some random remarks, J. Assoc. Lunar Planet. Observers, The Strolling Astronomer, 45, 4345.Google Scholar
Haberle, R. M. and Kahre, M. A. (2010) Detecting secular climate change on Mars, Mars, 5, 6875, doi:10.1555/mars.2010.0003.Google Scholar
Haberle, R. M., Pollack, J. B., Barnes, J. R., et al. (1993) Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model: 1. The zonal-mean circulation. J. Geophys. Res., Planets, 98, E2, 30933123.Google Scholar
Haberle, R. M., Murphy, J. R. and Schaeffer, J. (2003) Orbital change experiments with a Mars general circulation model, Icarus, 161, 1, 6689.Google Scholar
Haberle, R. M., Mattingly, B., and Titus, T. N. (2004) Reconciling different observations of the CO2 ice mass loading of the Martian north polar cap, Geophys. Res. Lett., 31, L05702.Google Scholar
Haberle, R. M., Forget, F., Colaprete, A., et al. (2008) The effect of ground ice on the Martian seasonal CO2 cycle, Planetary and Space Science, 56, 2, 251255.Google Scholar
Haberle, R. M., Kahre, M. A., Malin, M., and Thomas, P. C. (2009) The disappearing south residual cap on Mars: where is the CO2 going? in Third International Workshop on Mars Polar Energy Balance and the CO2 Cycle, July 21–24, Seattle, Washington. LPI Contribution No. 1494, 1920.Google Scholar
Hanel, R. A., Conrath, B. J., Hovis, W. A., et al. (1970) Infrared Spectroscopy Experiment for Mariner Mars 1971, Icarus, 12, 1, 4862.Google Scholar
Hanel, R., Conrath, B., Hovis, W., et al. (1972) Investigation of the Martian environment by infrared spectroscopy on Mariner 9, Icarus, 17, 423442.Google Scholar
Hansen, C. J., Thomas, N., Portyankina, G. et al. (2010) HiRISE observations of gas sublimation-driven activity in Mars’ southern polar regions: I. Erosion of the surface, Icarus, 205, 1, 283295.Google Scholar
Hansen, C. J., Bourke, M., Bridges, N. T., et al. (2011) Seasonal erosion and restoration of Mars’ northern polar dunes, Science, 331, 6017, 575.Google Scholar
Hansen, C. J., Byrne, S., Portyankina, G., et al. (2013) Observations of the northern seasonal polar cap on Mars: I. Spring sublimation activity and processes, Icarus, 225, 2, 881897.CrossRefGoogle Scholar
Hansen, G. B. (1997) The infrared absorption spectrum of carbon dioxide ice from 1.8 to 333 micrometers, J. Geophys. Res., 102, 2156921587.Google Scholar
Hansen, G. B. (1999) Control of the radiative behavior of the Martian polar caps by surface CO2 ice: evidence from Mars Global Surveyor measurements, J. Geophys. Res., 104, 1647116486.Google Scholar
Hansen, G. B. (2005) Ultraviolet to near-infrared absorption spectrum of carbon dioxide ice from 0.174 to 1.8 mm, J. Geophys. Res., 110, E11003, doi:10.1029/2005JE002531.Google Scholar
Hansen, G. B. (2013) An examination of Mars’ north seasonal polar cap using MGS: composition and infrared radiation balance, Icarus, 225, 869880.Google Scholar
Hansen, G. B., Giuranna, W., Formisano, V., et al. (2005) PFS-MEX observation of ices in the residual south polar cap of Mars, Planet. Space Sci., 53, 10891095.Google Scholar
Hayne, P. O., Paige, D. A., Schofield, J. T., et al. (2012) Carbon dioxide snow clouds on Mars: south polar winter observations by the Mars Climate Sounder, J. Geophys. Res., 117, E08014, doi:10.1029/2011JE004040.Google Scholar
Hayne, P. O., Paige, D. A., Heavens, N. G. (2014) The role of snowfall in forming the seasonal ice caps of Mars: models and constraints from the Mars Climate Sounder, Icarus, 231, 122130.Google Scholar
Head, J. W., Pratt, S. (2001) Extensive Hesperian-aged south polar ice sheet on Mars: evidence for massive melting and retreat, and lateral flow and ponding of meltwater, Journal of Geophysical Research, 106, E6, 1227512300.Google Scholar
Head, J. W., Mustard, J. F., Kreslavsky, M. A., et al. (2003) Recent ice ages on Mars, Nature, 426, 6968, 797802.Google Scholar
Hecht, M. H. (2008) The texture of condensed CO2 on the Martian polar caps Planet. Space Sci., 56, 246250.Google Scholar
Herr, K. C. and Pimentel, G. C. (1969) Infrared absorptions near three microns recorded over the polar cap of Mars, Science, 166, 3904, 496499.Google Scholar
Herr, K. C., Forney, P. B., and Pimentel, G. C. (1972) Mariner Mars 1969 infrared spectrometer, Applied Optics, 11, 3, 493501.Google Scholar
Herschel, W. (1784) On the remarkable appearances at the polar regions of the planet Mars, the inclination of its axis, the position of its poles, and its spheroidical figure; With a few hints relating to its real diameter and atmosphere, Philos. Trans. R. Soc. London, 74, 233273.Google Scholar
Hess, S. L., Henry, R. M., Leovy, C. B., et al. (1977) Meteorological results from the surface of Mars – Viking 1 and 2, J. Geophys. Res., 82, 45594574.Google Scholar
Hess, S. L., Henry, R. M., and Tillman, J. E. (1979) The seasonal variation of atmospheric pressure on Mars as affected by the south polar cap, J. Geophys. Res., 84, 29232927.Google Scholar
Hinson, D. P., Flasar, F. M., Simpson, R. A., et al. (1999) Initial results from radio occultation measurements with Mars Global Surveyor, J. Geophys. Res., 104, 2699727012.Google Scholar
Hinson, D. P., Wilson, R. J., Smith, M. D. and Conrath, B. J. (2003) Stationary planetary waves in the atmosphere of Mars during southern winter, J. Geophys. Res., 108, doi:10.1029/2002JE001949.Google Scholar
Houben, H., Haberle, R. M., Young, R. E., and Zent, A. P. (1997) Modeling the Martian seasonal water cycle, J. Geophys. Res., 102, 90699084.Google Scholar
Hourdin, F., Van, P. L., Forget, F., and Talagrand, O. (1993) Meteorological variability and the annual surface pressure cycle on Mars, Journal of Atmospheric Sciences, 50, 21, 36253640. doi:10.1175/1520-0469(1993)050.Google Scholar
Hourdin, F., Forget, F., and Talagrand, O. (1995) The sensitivity of the Martian surface pressure and atmospheric mass budget to various parameters: a comparison between numerical simulations and Viking observations, Journal of Geophysical Research, 100, E3, 55015523.Google Scholar
Hu, R., Cahoy, K., Zuber, M. T. (2012) Mars atmospheric CO2 condensation above the north and south poles as revealed by radio occultation, climate sounder, and laser ranging observations, J. Geophys. Res., 117, E7, CiteID E07002.Google Scholar
Hugenholtz, C. H. (2008) Frosted granular flow: a new hypothesis for mass wasting in Martian gullies, Icarus, 197, 6572.Google Scholar
Ivanov, A. B. (2002) Some aspects of the Martian climate in the Mars Orbiter Laser Altimeter (MOLA) investigation. Part I. Evolution of the polar residual ice caps. Part II. Polar night clouds. Part III. Interpretation of the MOLA reflectivity measurement in terms of the surface albedo and atmospheric opacity. PhD Thesis, California Institute of Technology, Source DAI-B 62/11.Google Scholar
Jakosky, B. (2008) The Mars Atmosphere and Volatile Evolution (MAVEN) Mars Scout Mission, in Third International Workshop on The Mars Atmosphere: Modeling and Observations, held November 10–13, 2008 in Williamsburg, Virginia. LPI Contribution No. 1447, 9036.Google Scholar
Jakosky, B. M., and Barker, E. S. (1984) Comparison of ground-based and Viking Orbiter measurements of Martian water vapor–variability of the seasonal cycle, Icarus, 57, 322334.Google Scholar
Jakosky, B. M. and Haberle, R. M. (1990) Year-to-year instability of the Mars south polar cap, J. Geophys. Res: Solid Earth, 95, B2, 13591365.Google Scholar
James, P. B. and North, G. R. (1982) The seasonal CO2 cycle on Mars – an application of an energy balance climate model, J. Geophys. Res., 87, 1027110283.Google Scholar
James, P. B., Kieffer, H. H., and Paige, D. A. (1992) The seasonal cycle of carbon dioxide on Mars. In Mars (ed. Kieffer, H. H. et al.) University of Arizona Press, 934968.Google Scholar
James, P. B., Cantor, B. A., Malin, M. C., et al. (2000) The 1997 spring regression of the Martian south polar cap: Mars Orbiter Camera observations, Icarus, 144, 2, 410418.Google Scholar
James, P. B., Cantor, B. A., and Davis, S. (2001) Mars Orbiter Camera observations of the Martian south polar cap in 1999–2000, Journal of Geophysical Research, 106, E10, 2363523652.Google Scholar
James, P. B., Bonev, B. P., and Wolff, M. J. (2005) Visible albedo of Mars’ south polar cap: 2003 HST observations, Icarus, 174, 2, 596599.Google Scholar
James, P. B., Thomas, P. C., Wolff, M. J., Bonev, B. P. (2007) MOC observations of four Mars year variations in the south polar residual cap of Mars, Icarus, 192, 2, 318326.Google Scholar
Jaumann, R., Neukum, G., Behnke, T., et al. (2007) The high-resolution stereo camera (HRSC) experiment on Mars Express: instrument aspects and experiment conduct from interplanetary cruise through the nominal mission, Planet. Space Sci., 55, 78.Google Scholar
Jian, J.-J., and Ip, W.-H. (2009) Seasonal patterns of condensation and sublimation cycles in the cryptic and non-cryptic regions of the south pole, Advances in Space Research, 43, 1, 138142.Google Scholar
Karlsson, N. B., Holt, J. W., and Hindmarsh, R. C. A. (2011) Testing for flow in the north polar layered deposits of Mars using radar stratigraphy and a simple 3D ice-flow model, Geophys. Res. Lett., 38, 24204.Google Scholar
Kass, D. M., and Yung, Y. L. (1995) Loss of atmosphere from Mars due to solar wind-induced sputtering, Science, 268, 5211, 697699.Google Scholar
Kelly, E. J. (2006) Seasonal polar carbon dioxide frost on Mars: spatiotemporal quantification of carbon dioxide utilizing 2001 Mars Odyssey gamma ray spectrometer data, PhD dissertation, University of Arizona, AAT 3206184. DAI-B 67/01.Google Scholar
Kelly, N., Boynton, W., Kerry, K., et al. (2006) Seasonal polar carbon dioxide frost on Mars: CO2 mass and columnar thickness distribution, J. Geophys. Res., 111(E3), E03S07.Google Scholar
Kieffer, H. H. (1979) Mars south polar spring and summer temperatures: a residual CO2 frost, J. Geophys. Res., 84, 8263–88.Google Scholar
Kieffer, H. H. (2000) Annual punctuated CO2 slab-ice and jets on Mars, International Conference on Mars Polar Science and Exploration, 93.Google Scholar
Kieffer, H. H. (2007) Cold jets in the Martian polar caps, J. Geophys. Res., 112, E08005, doi:10.1029/2006JE002816.Google Scholar
Kieffer, H. H., and Zent, A. P. (1992) Quasi-periodic climate change on Mars, in Mars (A93-27852 09-91), 11801218.Google Scholar
Kieffer, H. H. and Titus, T. (2001) TES mapping of Mars’ north seasonal cap, Icarus, 154, 162180.Google Scholar
Kieffer, H. H., Neugebauer, G., Munch, G., Chase, S. C., Jr., and Miner, E. (1972) Infrared Thermal Mapping Experiment: the Viking Mars Orbiter, Icarus, 16, 1, 4756.Google Scholar
Kieffer, H. H., Titus, T. N., Mullins, K. F., and Christensen, P. R. (2000) Mars south polar spring and summer behavior observed by TES: seasonal cap evolution controlled by frost grain size, J. Geophys. Res., 105, 96539699.Google Scholar
Kieffer, H. H., Christensen, P. R., and Titus, T. N. (2006) CO2 jets formed by sublimation beneath translucent slab ice in Mars’ seasonal south polar ice cap, Nature, 442, 793796.Google Scholar
Kolb, E. J. and Tanaka, K. L. (2006) Accumulation and erosion of south polar layered deposits in the Promethei Lingula region, Planum Australe, Mars, International Journal of Mars Science and Exploration, 2, 19.Google Scholar
Kolb, E. J., Tanaka, K. L., Greeley, R., et al. (2006) The residual ice cap of Planum Australe, Mars: new insights from the HRSC experiment, in 37th Annual Lunar and Planetary Science Conference, March 13–17, League City, Texas, Abstract No. 2408.Google Scholar
Konopliv, A. S., Asmar, S. W., Folkner, W. M., et al. (2011) Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters, Icarus, 211, 401428.Google Scholar
Koutnik, M., Byrne, S., and Murray, B. (2002) South polar layered deposits of Mars: the cratering record, J. Geophys. Res. (Planets), 107, 5100.Google Scholar
Kravchenko, Y. G., and Krupskii, I. N. (1986) Thermal conductivity of solid N2O and CO2, Sov. J. Low Temp. Phys., 12, 1, 4648.Google Scholar
Kreslavsky, M. A., and Head, J. W. (2005) Mars at very low obliquity: atmospheric collapse and the fate of volatiles, Geophysical Research Letters, 32, 12, L12202.Google Scholar
Kreslavsky, M. A., and Head, J. W. (2011) Carbon dioxide glaciers on Mars: products of recent low obliquity epochs (?), Icarus, 216, 1, 111115.Google Scholar
Kuroda, T., Medvedev, A. S., Kasaba, Y., and Hartogh, P. (2013) Carbon dioxide ice clouds, snowfalls, and baroclinic waves in the northern winter polar atmosphere of Mars, Geophys. Res. Lett., 40, 8, 14841488, doi:10.1002/grl.50326.Google Scholar
Langevin, Y., Poulet, F., Bibring, J.-P., et al. (2005) Summer evolution of the north polar cap of Mars as observed by OMEGA/Mars Express, Science, 307, 15811583.Google Scholar
Langevin, Y., Douté, S., Vincendon, M., et al. (2006) No signature of clear CO2 ice from the “cryptic” regions in Mars’ south seasonal cap, Nature, 442, 790792.Google Scholar
Langevin, Y., Bibring, J.-P., Montmessin, F., et al. (2007) Observations of the south seasonal cap of Mars during recession in 2004–2006 by the OMEGA visible/near-infrared imaging spectrometer on board Mars Express, J. Geophys. Res., 112, E08S12, doi:10.1029/2006JE002841.Google Scholar
Laskar, J., Correia, A. C. M., Gastineau, M., Joutel, F., Levrard, B., Robutel, P. (2004) Long term evolution and chaotic diffusion of the insolation quantities of Mars, Icarus, 170, 2, 343364.Google Scholar
Laufer, D., Bar-Nun, A., Pat-El, I., and Jacovi, R. (2013) Experimental studies of ice grain ejection by massive gas flow from ice and implications to Comets, Triton and Mars, Icarus, 222, 2013, 7380.CrossRefGoogle Scholar
Leblanc, F., and Johnson, R. E. (2001) Sputtering of the Martian atmosphere by solar wind pick-up ions, Planetary and Space Science, 49, 6, 645656.Google Scholar
Leblanc, F., and Johnson, R. E. (2002) Role of molecular species in pickup ion sputtering of the Martian atmosphere, Journal of Geophysical Research (Planets), 107, E2, 51, doi:10.1029/2000JE001473.Google Scholar
Leighton, R. B., and Murray, B. C. (1966) Behavior of carbon dioxide and other volatiles on Mars, Science, 153, 3732, 136144.Google Scholar
Leighton, R. B., Horowitz, N. H., Murray, B. C., et al. (1969) Mariner 6 and 7 television pictures: preliminary analysis, Science, 166, 3901, 4967.Google Scholar
Lian, Y., Richardson, M. I., Newman, C. E., et al. (2012) The Ashima/MIT Mars GCM and argon in the Martian atmosphere, Icarus, 218, 2, 10431070.Google Scholar
Line, M. R., and Ingersoll, A. P. (2010) Can the solid state greenhouse effect produce ~100 year cycles in the Mars south polar residual CO2 ice cap? American Geophysical Union, Fall Meeting 2010, abstract #P53F-07.Google Scholar
Listowski, C., Määttänen, A., Riipinen, I., Montmessin, F., and Lefèvre, F. (2013) Near-pure vapor condensation in the Martian atmosphere: CO2 ice crystal growth, J. Geophys. Res. (Planets), 118, 21532171, doi:10.1002/jgre.20149.Google Scholar
Listowski, C., Määttänen, A., Montmessin, F., Spiga, A., and Lefèvre, F., (2014) Modeling the microphysics of CO2 ice clouds within wave-induced cold pockets in the Martian mesosphere, Icarus, 237, 239261.Google Scholar
Litvak, M., Mitrofanov, I., Kozyrev, A., et al. (2005) Modeling of Martian seasonal caps from HEND/ODYSSEY data, Advances in Space Research, 36, 11, 21562161.Google Scholar
Litvak, M., Mitrofanov, I., Kozyrev, A., et al. (2006) Comparison between polar regions of Mars from HEND/Odyssey data, Icarus, 180, 1, 2337.Google Scholar
Määttänen, A., Vehkamäki, H., Lauri, A., et al. (2005) Nucleation studies in the Martian atmosphere, J. Geophys. Res. (Planets), 110, E02002, doi:10.1029/2004JE002308.Google Scholar
Määttänen, A., Vehkamäki, H., Lauri, A., Napari, I., Kulmala, M., 2007. Two-component heterogeneous nucleation kinetics and an application to Mars, Journal of Chemical Physics, 127, 134710. doi:10.1063/1.2770737.Google Scholar
Mahaffy, P. R., Webster, C. R., Atreya, S. K., et al. (2013) Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover, Science, 341, 6143, 263266.Google Scholar
Malin, M. C., and Edgett, K. S. (2001) Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission, Journal of Geophysical Research, 106, E10, 2342923570.Google Scholar
Malin, M. C., Carr, M. H., Danielson, G. E., et al. (1998) Early views of the Martian surface from the Mars Orbiter Camera of Mars Global Surveyor, Science, 279, 5357, 1681.Google Scholar
Malin, M. C., Calvin, W., Clancy, R. T., et al. (2001a) The Mars Color Imager (MARCI) on the Mars Climate Orbiter, J. Geophys. Res., 106, E8, 1765117672.Google Scholar
Malin, M. C., Caplinger, M. A., and Davis, S. D. (2001b) Observational evidence for an active surface reservoir of solid carbon dioxide on Mars, Science, 294, 5549, 21462148.Google Scholar
Malin, M. C., Bell, J. F., Cantor, B. A., et al. (2007) Context Camera Investigation on board the Mars Reconnaissance Orbiter, J. Geophys. Res., 112, E5, CiteID E05S04.Google Scholar
Manning, C. V., McKay, C. P., and Zahnle, K. J. (2006) Thick and thin models of the evolution of carbon dioxide on Mars, Icarus, 180, 1, 3859.Google Scholar
Maurice, S., Feldman, W., Diez, B., et al. (2011) Mars Odyssey neutron data: 1. Data processing and models of water-equivalent-hydrogen distribution, J. Geophys. Res., 116, E11, E11008.Google Scholar
McCleese, D. J., Schofield, J. T., Taylor, F. W., et al. (2007) Mars Climate Sounder: an investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions, J. Geophys. Res., 112, E5, E05S06.Google Scholar
McCleese, D. J., Schofield, J. T., Taylor, F. W., et al. (2008) Intense polar temperature inversion in the middle atmosphere on Mars, Nature Geoscience, 1, 11, 745749.Google Scholar
McEwen, A. S., Eliason, E. M., Bergstrom, J. W., et al. (2007) Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE), J. Geophys. Res., 112, E5, E05S02.Google Scholar
Mellon, M. T. (1996) Limits on the CO2 content of the Martian polar deposits, Icarus, 124, 1, 268279.Google Scholar
Mellon, M. T. and Jakosky, B. M. (1995) The distribution and behavior of Martian ground ice during past and present epochs, J. Geophys. Res., 100, E6, 1178111799.Google Scholar
Mellon, M. T., Feldman, W. C., and Prettyman, T. H. (2004) The presence and stability of ground ice in the southern hemisphere of Mars, Icarus, 169, 2, 324340.Google Scholar
Michaels, T. I. and Rafkin, S. C. R. (2008) Meteorological predictions for candidate 2007 Phoenix Mars Lander sites using the Mars Regional Atmospheric Modeling System (MRAMS), J. Geophys. Res., 113, E00A07, doi:10.1029/2007JE003013.Google Scholar
Michalski, J.R. and Niles, P.B. (2010) Deep crustal carbonate rocks exposed by meteoritic impact on Mars, Nature Geoscience, 3, 751755.Google Scholar
Mischna, M. A., Richardson, M. I., Wilson, R. J., and McCleese, D. J. (2003) On the orbital forcing of Martian water and CO2 cycles: a general circulation model study with simplified volatile schemes, J. Geophys. Res., 108, E6, CiteID 5062, doi:10.1029/2003JE002051.Google Scholar
Mitrofanov, I., Anfimov, D., Kozyrev, A., et al. (2002) Maps of subsurface hydrogen from the High Energy Neutron Detector, Mars Odyssey, Science, 297, 5578, 7881.Google Scholar
Montmessin, F., Bertaux, J. L., Quemerais, E., et al. (2006) Subvisible CO2 ice clouds detected in the mesosphere of Mars, Icarus, 183, 403410.Google Scholar
Montmessin, F., Haberle, R. M., Forget, F., et al. (2007) On the origin of perennial water ice at the south pole of Mars: a precession-controlled mechanism? J. Geophys. Res. (Planets), 112, 8.Google Scholar
Mullins, J. C., Kirk, B. S., and Ziegler, W. T. (1963) Calculations of the vapor pressure and heats of vaporization and sublimation of liquids and solids, especially below one atmosphere. V. Carbon monoxide and carbon dioxide. Tech Rep. No. 2, Project A-663, Engineering Experiment Station, Georgia Inst. of Tech., August.Google Scholar
Murphy, J. R., Pollack, J. B., Haberle, R. M., et al. (1995) Three-dimensional numerical simulation of Martian global dust storms. J. Geophys. Res., 100, E12, 2635726376.Google Scholar
Nelli, S. M., Murphy, J. R., Sprague, A. L., et al. (2007) Dissecting the polar dichotomy of the non-condensable gas enhancement on Mars using the NASA Ames Mars General Circulation Model. J. Geophys. Res.: Planets, 112(E8).Google Scholar
Neugebauer, G., Münch, G., Chase, S. C., Jr., et al. (1969) Mariner 1969: preliminary results of the Infrared Radiometer Experiment, Science, 166, 3901, 9899.Google Scholar
Neugebauer, G., Münch, G., Kieffer, H., Chase, S. C., Jr., and Miner, E. (1971) Mariner 1969 Infrared Radiometer results: temperatures and thermal properties of the Martian surface, Astronomical Journal, 76, 719.Google Scholar
Neumann, G. A., Smith, D. E. and Zuber, M. T. (2003) Two Mars years of clouds detected by Mars Orbiter Laser Altimeter, J. Geophys. Res., 108, doi:10.1029/2002JE001849.Google Scholar
Newman, C. E., Lewis, S. R. and Read, P. L. (2005) The atmospheric circulation and dust activity in different orbital epochs on Mars, Icarus, 174, 135160.Google Scholar
Nye, J., Durham, W. B., Schenk, P. M., and Moore, J. M. (2000) The instability of a south polar cap on Mars composed of carbon dioxide, Icarus, 144, 2, 449455.Google Scholar
Ortega, I. K., Määttänen, A., Kurtén, T., Vehkamäki, H. (2011) Carbon dioxide–water clusters in the atmosphere of Mars, Computational and Theoretical Chemistry, 965, 353358.Google Scholar
Owen, T., Biemann, K., Rushneck, D., et al. (1977) The composition of the atmosphere at the surface of Mars. J. Geophys. Res., 82, 28, 46354639.Google Scholar
Paige, D. A. (1985) The annual heat balance of the Martian polar caps from Viking observations, Ph.D. dissertation, California Institute of Technology.Google Scholar
Paige, D. A., and Ingersoll, A. P. (1985) Annual heat-balance of Martian polar caps: Viking observations, Science, 228, 11601168.Google Scholar
Paige, D. A., and Wood, S. E. (1992) Modeling the Martian seasonal CO2 cycle 2. Interannual variability, Icarus, 99, 1, 1527.Google Scholar
Phillips, R. J., Zuber, M. T., Smrekar, S. E., et al. (2008) Mars north polar deposits: stratigraphy, age, and geodynamical response, Science, 320, 1182.Google Scholar
Phillips, R. J., Davis, B. J., Tanaka, K. L., et al. (2011) Massive CO2 ice deposits sequestered in the south polar layered deposits of Mars, Science, 332, 6031, 838.Google Scholar
Pilorget, C., Forget, F., Millour, E., et al. (2011) Dark spots and cold jets in the polar regions of Mars: new clues from a thermal model of surface CO2 ice, Icarus, 213, 131149.Google Scholar
Piqueux, S., and Christensen, P. R. (2008a) North and south subice gas flow and venting of the seasonal caps of Mars: a major geomorphological agent, J. Geophys. Res., 113, E6, E06005.Google Scholar
Piqueux, S., and Christensen, P. R. (2008b) Deposition of CO2 and erosion of the Martian south perennial cap between 1972 and 2004: implications for current climate change, J. Geophys. Res., 113, E02006, doi:10.1029/2007JE002969.Google Scholar
Piqueux, S., Byrne, S., and Richardson, M. I. (2003) Sublimation of Mars’s southern seasonal CO2 ice cap and the formation of spiders, J. Geophys. Res., 108, 5084, doi:10.1029/2002JE002007.Google Scholar
Piqueux, S., Edwards, C. S., and Christensen, P. R. (2008) Distribution of the ices exposed near the south pole of Mars using Thermal Emission Imaging System (THEMIS) temperature measurements J. Geophys. Res., 113, E8, E08014.Google Scholar
Piqueux, S., Byrne, S., Kieffer, H. H., Titus, T. N., and Hansen, C. J. (2015) Enumeration of Mars years and seasons since the beginning of telescopic exploration, Icarus, 251, 332338.Google Scholar
Plaut, J. J. (2005) An inventory of impact craters on the Martian south polar layered deposits, 36th Annual Lunar and Planetary Science Conference, 2319.Google Scholar
Pollack, J. B., Haberle, R. M., Schaeffer, J., and Lee, H. (1990) Simulations of the general circulation of the Martian atmosphere: 1. Polar processes, J. Geophys. Res: Solid Earth, 95, B2, 14471473.Google Scholar
Pollack, J. B., Haberle, R. M., Murphy, J. R., Schaeffer, J., and Lee, H. (1993) Simulations of the general circulation of the Martian atmosphere: 2. Seasonal pressure variations, J. Geophys. Res.: Planets, 98, E2, 31493181.Google Scholar
Pommerol, A., Appéré, T., Portyankina, G., et al. (2013) Observations of the northern seasonal polar cap on Mars III: CRISM/HiRISE observations of spring sublimation, Icarus, 225, 2, 911922.CrossRefGoogle Scholar
Portyankina, G., Markiewicz, W. J., Thomas, N., Hansen, C. J., and Milazzo, M. (2010) HiRISE observations of gas sublimation-driven activity in Mars’ southern polar regions: III. Models of processes involving translucent ice, Icarus, 205, 1, 311320.Google Scholar
Portyankina, G., Pommerol, A., Aye, K.-M., et al. (2013) Observations of the northern seasonal polar cap on Mars II: HiRISE photometric analysis of evolution of northern polar dunes in spring, Icarus, 225, 2, 898910.Google Scholar
Prettyman, T. H. (2014) Remote sensing of chemical elements using nuclear spectroscopy, in Encyclopedia of the Solar System, Elsevier, 11611183.Google Scholar
Prettyman, T. H., Feldman, W. C., Mellon, M. T., et al. (2004) Composition and structure of the Martian surface at high southern latitudes from neutron spectroscopy, J. Geophys. Res. 109, E5, E05001.Google Scholar
Prettyman, T. H., Feldman, W. C., and Titus, T. N. (2009) Characterization of Mars’ seasonal caps using neutron spectroscopy, J. Geophys, Res., 114, E8, E08005.CrossRefGoogle Scholar
Russell, P., Thomas, N., Byrne, S., et al. (2008) Seasonally active frost-dust avalanches on a north polar scarp of Mars captured by HiRISE, Geophys. Res. Lett., 35, 23, CiteID L23204.Google Scholar
Schmitt, B., Douté, S., Langevin, Y., et al. (2005a) Northern seasonal condensates on Mars by OMEGA/Mars Express, in Annu. Lunar Planet. Sci. Conf. XXXVI, League City, Texas, Abstract No. 2326, March 14–18.Google Scholar
Schmitt, B., Douté, S., Langevin, Y., et al. (2005b) Spring sublimation of the seasonal condensates on Mars from OMEGA/Mars Express, in Fall AGU Meeting, Abstract No. P23C-02.Google Scholar
Schmidt, F., Schmitt, B., Douté, S., et al. (2010) Sublimation of the Martian CO2 Seasonal South Polar Cap, Planetary and Space Science, 58, 10, 11291138.Google Scholar
Schofield, J. T., Barnes, J. R., Crisp, D., et al. (1997) The Mars Pathfinder atmospheric structure investigation/meteorology, Science, 278, 1752. doi:10.1126/science.278.5344.1752Google Scholar
Sefton-Nash, E., Teanby, N. A., Montabone, L., et al. (2013) Climatology and first-order composition estimates of mesospheric clouds from Mars Climate Sounder limb spectra, Icarus, 223, 710721.Google Scholar
Seiff, A., Tillman, J. E., Murphy, J. R., et al. (1997) The atmosphere structure and meteorology instrument on the Mars Pathfinder Lander, J. Geophys. Res., 102, E2, 40454056.Google Scholar
Siili, T., Haberle, R. M., and Murphy, J. R. (1997) Sensitivity of Martian Southern polar cap edge winds and surface stresses to dust optical thickness and to the large-scale sublimation flow, Advances in Space Research, 19, 12411244, doi:10.1016/S0273-1177(97)00276-7.Google Scholar
Siili, T., Haberle, R. M., Murphy, J. R., and Savijärvi, H. (1999) Modelling of the combined late-winter ice cap edge and slope winds in Mars Hellas and Argyre regions, Planetary and Space Science, 47, 951970, doi:10.1016/S0032-0633(99)00016-1.Google Scholar
Silvestro, S., Fenton, L. K., Vaz, D. A., Bridges, N. T., and Ori, G. G. (2010) Ripple migration and dune activity on Mars: evidence for dynamic wind processes, Geophys. Res. Lett., 37, 20, CiteID L20203.Google Scholar
Smith, D. E., Zuber, M. T., and Neumann, G. A. (2001a) Seasonal variations of snow depth on Mars, Science, 294, 21412146.Google Scholar
Smith, D. E., Zuber, M. T., Frey, H. V., et al. (2001b) Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars, J. Geophys. Res., 106, 2368923722.Google Scholar
Smith, D. E., Zuber, M. T., Torrence, M. H., et al. (2009) Time variations of Mars’ gravitational field and seasonal changes in the masses of the polar ice caps, J. Geophys. Res., 114, E05002, doi:10.1029/2008JE003267.Google Scholar
Smith, M. D., Pearl, J. C., Conrath, B. J., and Christensen, P. R. (2001) Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution, Journal of Geophysical Research, 106, E10, 2392923945.Google Scholar
Spiga, A., Forget, F., Madeleine, J.-B., et al. (2011) The impact of Martian mesoscale winds on surface temperature and on the determination of thermal inertia, Icarus, 212, 504519.Google Scholar
Spiga, A., González-Galindo, F., López-Valverde, M.-Á., and Forget, F. (2012) Gravity waves, cold pockets and CO2 clouds in the Martian mesosphere, Geophys. Res. Lett., 39, L02201, doi:10.1029/2011GL050343.Google Scholar
Sprague, A. L., Boynton, W. V., Kerry, K. E., et al. (2004) Mars’ south polar Ar enhancement: a tracer for south polar seasonal meridional mixing. Science, 306, 5700, 13641367.Google Scholar
Sprague, A. L., Boynton, W. V., Kerry, K. E., et al. (2007) Mars’ atmospheric argon: tracer for understanding Martian atmospheric circulation and dynamics, J. Geophys. Res., 112, E3, E03S02.Google Scholar
Sprague, A. L., Boynton, W. V., Forget, F., et al. (2012) Interannual similarity and variation in seasonal circulation of Mars’ atmospheric Ar as seen by the Gamma Ray Spectrometer on Mars Odyssey, J. Geophys. Res., 117, E4, CiteID E04005.Google Scholar
Stoney, G. J. (1898) Of atmospheres upon planets and satellites, Astrophys. J., 7, 25.Google Scholar
Sutter, B., Boynton, W. V., Ming, D. W., et al. (2012) The detection of carbonate in the Martian soil at the Phoenix Landing site: a laboratory investigation and comparison with the Thermal and Evolved Gas Analyzer (TEGA) data, Icarus, 218, 290296.Google Scholar
Szwast, M. A., Richardson, M. I., and Vasavada, A. R. (2006) Surface dust redistribution on Mars as observed by the Mars Global Surveyor and Viking orbiters, Journal of Geophysical Research, 111, E11, E11008.Google Scholar
Tanaka, K. L., Kolb, E. J., and Fortezzo, C. (2007) Recent advances in the stratigraphy of the polar regions of Mars, Seventh International Conference on Mars, 1353, 3276.Google Scholar
Taylor, P. A., Kahanpää, H., Weng, W., et al. (2010) On pressure measurement and seasonal pressure variations during the Phoenix mission, J. Geophys. Res., 115, E00E15. doi:10.1029/2009JE003422.Google Scholar
Thomas, P. C., Malin, M. C., Edgett, K. S., et al. (2000) North–south geological difference between the residual polar caps on Mars, Nature, 404, 161–4.Google Scholar
Thomas, P. C., Malin, M. C., James, P. B., et al. (2005) South polar residual cap of Mars: features, stratigraphy, and changes, Icarus, 174, 535–59, 2005.Google Scholar
Thomas, P. C., James, P. B., Calvin, W. M., et al. (2009) Residual south polar cap of Mars: stratigraphy, history, and implications of recent changes, Icarus, 203, 2, 352375.Google Scholar
Thomas, P. C., Calvin, W. M., Gierasch, P., et al. (2013) Time scales of erosion and deposition recorded in the residual south polar cap of Mars, Icarus, 225, 2, 923932.Google Scholar
Tillman, J. E. (1988) Mars global atmospheric oscillations: annually synchronized, transient normal mode oscillations and the triggering of global dust storms, J. Geophys. Res., 93, 94339451.Google Scholar
Tillman, J. E., Johnson, N. C., Guttorp, P., and Percival, D. B. (1993) The Martian annual atmospheric pressure cycle – years without great dust storms, J. Geophys. Res., 98, 1096310971. doi:10.1029/93JE01084.Google Scholar
Titus, T. N. (2005a) Mars polar cap edges tracked over 3 full Mars years, in Annu. Lunar Planet. Sci. Conf. XXXVI, Houston, TX: Lunar and Planetary Institute, Abstract #1993, March 14–18.Google Scholar
Titus, T. N. (2005b) Thermal infrared and visual observations of a water ice lag in the Mars southern summer, Geophys. Res. Lett., 32, L24204, doi:10.1029/2005GL024211.Google Scholar
Titus, T. N., and Kieffer, H. H. (2001) IR spectral properties of dust and ice at the mass south polar cap, American Astronomical Society, DPS Meeting #33, Abstract #19.15, Bull. Am. Astron., 33, 1071.Google Scholar
Titus, T. N. and Michaels, T. I. (2009) Determining priorities for future Mars polar research, Eos, Transactions American Geophysical Union, 90, 40, 351351.Google Scholar
Titus, T. N., and Cushing, G. E. (2014) Monitoring the Mars polar caps during Mars years 24–28, in 45th Lunar and Planetary Science Conference, 17–21 March, The Woodlands, Texas. LPI Contribution No. 1777, 2177.Google Scholar
Titus, T. N., Kieffer, H. H., and Mullins, K. F. (1998) TES observations of the south pole, American Astronomical Society, DPS meeting #30, #20.05, Bull. Amer. Astron. Soc., 30, 1049.Google Scholar
Titus, T. N., Kieffer, H. H., Mullins, K. F., and Christensen, P. R. (2001) TES premapping data: slab ice and snow flurries in the Martian north polar night, J. Geophys. Res., 106, E10, 2318123196.Google Scholar
Titus, T. N., Kieffer, H. H., and Christensen, P. R. (2003) Exposed water ice discovered near the south pole of Mars, Science, 299, 10481051.Google Scholar
Titus, T. N., Kieffer, H. H., Langevin, Y., et al. (2007) Bright fans in Mars cryptic region caused by adiabatic cooling of CO2 gas jets, American Geophysical Union, Fall Meeting 2007, abstract #P24A-05.Google Scholar
Titus, T. N., Calvin, W. M., Kieffer, H. H., et al. (2008) Martian polar processes, in The Martian Surface – Composition, Mineralogy, and Physical Properties. Ed. Bell, Jim, III. Cambridge University Press, Cambridge, 578.Google Scholar
Titus, T. N., Prettyman, T. H., Brown, A., et al. (2010a) Mars Ice Condensation and Density Orbiter, paper presented at LPSC XXXXI, LPI, Houston, TX.Google Scholar
Titus, T. N., Prettyman, T. H., Michaels, T., et al. (2010b) Mars Polar Science for the Next Decade Decadal Survey, White Paper, http://www8.nationalacademies.org/ssbsurvey/publicview.aspx, 6.Google Scholar
Tobie, G., Forget, F., and Lott, F. (2003) Numerical simulation of the winter polar wave clouds observed by Mars Global Surveyor Mars Orbiter Laser Altimeter, Icarus, 164, 1, 3349.Google Scholar
Toigo, A. D., Richardson, M. I., Wilson, R. J., et al. (2002) A first look at dust lifting and dust storms near the south pole of Mars with a mesoscale model, J. Geophys. Res., 107, E7, doi:10.1029/2001JE001592.Google Scholar
Toigo, A. D., Smith, M. D., Seelos, F. P., and Murchie, S. L. (2013) High spatial and temporal resolution sampling of Martian gas abundances from CRISM spectra, J. Geophys. Res. Planets, 118, 89104, doi:10.1029/2012JE004147.Google Scholar
Tokar, R. L., Feldman, W. C., Prettyman, T. H., et al. (2002) Ice concentration and distribution near the south pole of Mars: synthesis of Odyssey and global surveyor analyses, Geophys. Res. Lett., 29, 1904, doi:10.1029/2002GL015691.Google Scholar
Tokar, R., Elphic, R., Feldman, W., et al. (2003) Mars Odyssey neutron sensing of the south residual polar cap, Geophys. Res. Lett., 30, 13, 1677.Google Scholar
Toon, O. B., Pollack, J. B., Ward, W., Burns, J. A., and Bilski, K. (1980) The astronomical theory of climatic change on Mars, Icarus, 44, 552607. doi:10.1016/0019-1035(80)90130-X.Google Scholar
Tyler, D., and Barnes, J. R. (2005) A mesoscale model study of summertime atmospheric circulations in the north polar region of Mars, J. Geophys. Res. Planets, 110, E06007.Google Scholar
Tyler, D. Jr., Barnes, J. R., and Skyllingstad, E. D. (2008) Mesoscale and large-eddy simulation model studies of the Martian atmosphere in support of Phoenix, J. Geophys. Res., 113, E00A12, doi:10.1029/2007JE003012.Google Scholar
Vesovic, V., Wakeham, W. A., Olchowy, G. A., et al. (1990) The transport properties of carbon dioxide, Journal of Physical and Chemical Reference Data, 19, 3, 763808.Google Scholar
Vincendon, M., Mustard, J., Forget, F., et al. (2010) Near-tropical subsurface ice on Mars., Geophys. Res. Lett., 37, 1, L01202.Google Scholar
Wagstaff, K. L., Titus, T. N., Ivanov, A. B., Castaño, R., and Bandfield, J. L. (2008) Observations of the north polar water ice annulus on Mars using THEMIS and TES, Planet. Space Sci., 56, 256265., doi:10.1016/j.pss.2007.08.008.Google Scholar
Ward, W. R., Murray, B. C., and Malin, M. C. (1974) Climatic variations on Mars: 2. Evolution of carbon dioxide atmosphere and polar caps, Journal of Geophysical Research, 79, 24, 3387.Google Scholar
Warren, S. G., Wiscombe, W. J., and Firestone, J. F. (1990) Spectral albedo and emissivity of CO2 in Martian polar caps – model results, J. Geophys. Res., 95, 1471714741.Google Scholar
Wells, E. H., and Hale, D. P. (1971) Flashes on Mars observed in 1937 and some random remarks, Nature, 232, 324325.Google Scholar
Wilson, L. J. (1937) Apparent flashes seen on Mars, Pop. Astron., 45, 430.Google Scholar
Winfree, K. N., and Titus, T. N. (2007) Trends in the south polar cap of Mars, in Seventh International Conference on Mars, July 9–13, Pasadena, CA, LPI Contribution No. 1353, 3373.Google Scholar
Wood, S. E. (1999) Nucleation and growth of CO2 ice crystals in the Martian atmosphere, Thesis, UCLA, Los Angeles.Google Scholar
Wood, S. E., and Paige, D. A. (1992) Modeling the Martian seasonal CO2 cycle 1: Fitting the Viking Lander pressure curves, Icarus, 99, 1, 114.Google Scholar
Yoder, C. F., and Standish, E. M. (1997) Martian precession and rotation from Viking Lander range data, J. Geophys. Res., 102, E2, 40654080.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×