Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-20T11:14:24.587Z Has data issue: false hasContentIssue false

4 - Occipital and parietal lobes

Published online by Cambridge University Press:  25 August 2009

David L. Clark
Affiliation:
Ohio State University
Nashaat N. Boutros
Affiliation:
Yale University, Connecticut
Mario F. Mendez
Affiliation:
University of California, Los Angeles
Get access

Summary

Occipital lobe

Anatomy and behavioral considerations

The occipital lobe is clearly demarcated from the parietal lobe on the medial surface by the parieto–occipital sulcus and by the anterior limb of the calcarine fissure (Figure 4.1). The short section of parieto–occipital sulcus on the dorsolateral surface is used as an anchor for an imaginary line that extends ventrally to the preoccipital notch (see Figure 5.1). This imaginary line is the border between the occipital and parietal as well as the temporal lobe on the lateral cortical surface. The border between the occipital and temporal lobes on the ventral surface is less distinct (see Figure 5.2). Some authors include all of the inferior temporal and fusiform gyri (medial occipitotemporal gyrus) with the temporal lobe; others assign the caudal portions of these gyri to the occipital lobe.

The cortex of the occipital lobe consists of Brodmann's areas (BA) 17, 18, and 19 (Figures 2.2, 2.3, 4.1, 4.2). Brodmann's area 17 is the primary visual cortex (striate cortex) and occupies a large portion of the medial aspect of the occipital lobe. Much of the primary visual cortex lies within the calcarine fissure which extends approximately 2.5 cm deep into the occipital lobe. A portion of BA 17 curves around the posterior surface of the brain onto the lateral surface of the occipital lobe. Brodmann's areas 18 and 19 are recognized as secondary and tertiary visual areas, respectively. Together, BA 18 and 19 represent the visual association area.

Type
Chapter
Information
The Brain and Behavior
An Introduction to Behavioral Neuroanatomy
, pp. 35 - 52
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre, G. K., and D'Esposito, M. 1997. Environmental knowledge is subserved by separable dorsal/ventral neural areas. J. Neurosci. 17:2512–2518.CrossRefGoogle ScholarPubMed
Anderson, S. W., and Rizzo, M. 1994. Hallucinations following occipital lobe damage: the pathological activation of visual representations. J. Clin. Exp. Neuropsychol. 16:651–653.CrossRefGoogle ScholarPubMed
Babb, T. H., Halgren, E., Wilson, C., Engel, J., and Crandall, P. 1981. Neuronal firing patterns during the spread of an occipital lobe seizure to the temporal lobes in man. Electroencephalogr. Clin. Neurophysiol. 51:104–107.CrossRefGoogle ScholarPubMed
Bisley, J. W., and Goldberg, M. E. 2003. Neuronal activity in the lateral intraparietal area and spatial attention. Science 299(5603):81–86.CrossRefGoogle ScholarPubMed
Biver, F., Goldman, S., Delvenne, V., Luxen, A., DeMaestelaer, V., Hubain, P., Mendlewicz, J., and Lotstra, F. 1994. Frontal and parietal metabolic disturbances in unipolar depression. Biol. Psychiatry 36:381–388.CrossRefGoogle ScholarPubMed
Blakemore, S-J., and Decetyl, J. 2001. From the perception of action to the understanding of intention. Nat. Rev. Neurosci. 2:561–567.Google ScholarPubMed
Blanke, O., Landis, T., Spinelli, L., and Seeck, M. 2004. Out-of-body experience and autoscopy of neurological origin. Brain 127:243–258.CrossRefGoogle ScholarPubMed
Buchsbaum, M. S., Wu, J., Haier, R., Hazlett, E., Ball, R., Katz, M., Sokolski, K., Lagunas-Solar, M., and Langer, D. 1987. Positron emission tomography assessment of effects of benzodiazepines on regional glucose metabolic rate in patients with anxiety disorder. Life Sci. 40:2393–2400.CrossRefGoogle ScholarPubMed
Caminiti, R., Ferranina, S., and Johnson, P. B. 1996. The sources of visual information to the primate frontal lobe: a novel role for the superior parietal lobule. Cereb. Cortex 6:319–328.CrossRefGoogle ScholarPubMed
Colby, C. L., and Duhamel, J.-R. 1991. Heterogeneity of extrastriate visual areas and multiple parietal areas in the macaque monkey. Neuropsychologia 29:517–537.CrossRefGoogle ScholarPubMed
Colby, C. L., and Goldberg, M. E. 1999. Space and attention in parietal cortex. Annu. Rev. Neurosci. 22:319–349.CrossRefGoogle ScholarPubMed
Critchley, M. 1953. The Parietal Lobes. London: Edward Arnold.Google Scholar
Critchley, M. 1964. The problem of visual agnosia. J. Neurol. Sci. 1:274–290.CrossRefGoogle ScholarPubMed
Decety, J., and Chaminade, T. 2003. Neural correlates of feeling sympathy. Neuropsychologia 41:127–138.CrossRefGoogle ScholarPubMed
DeRenzi, E., and Spinnler, H. 1967. Impaired performance on color tasks in patients with hemispheric damage. Cortex 3:194–216.CrossRefGoogle Scholar
DeRenzi, E., Faglioni, P., and Sorgato, P. 1982. Modality-specific and supramodal mechanisms of apraxia. Brain 105:301–312.CrossRefGoogle Scholar
Devinsky, O., Bear, D., and Volpe, B. T. 1988. Confusional states following posterior cerebral artery infarction. Arch. Neurol. 45:160–163.CrossRefGoogle ScholarPubMed
Duhamel, J.-R., Bremmer, F., BenHamed, S., and Graf, W. 1997. Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389:845–848.CrossRefGoogle ScholarPubMed
Fasold, O., Brevern, M., Kuhberg, M., Ploner, C. J., Villringer, A., Lempert, T., and Wenzel, R. 2002. Human vestibular cortex as identified with caloric stimulation in functional magnetic resonance imaging. Neuroimage 17(3):1384–1393.CrossRefGoogle ScholarPubMed
ffytche, D. H., Howard, R. J., Brammer, M. J., David, A., Woodruff, P., and Williams, S. 1998. The anatomy of conscious vision: an fMRI study of visual hallucinations. Nat. Neurosci. 1:1247–1260.CrossRefGoogle ScholarPubMed
Frederikse, M., Lu, A., Aylward, E., Barta, P., Sharma, T., and Pearlson, G. 2000. Sex differences in inferior parietal lobule volume in schizophrenia. Am. J. Psychiatry 157:422–427.CrossRefGoogle Scholar
Fredrikson, M., Fischer, H., and Wik, G. 1997. Cerebral blood flow during anxiety provocation. J. Clin. Psychiatry 58(Suppl. 16):16–21.Google ScholarPubMed
Galynker, I. I., Weiss, J., Ongseng, F., and Finestone, H. 1997. ECT treatment and cerebral perfusion in catatonia. J. Nucl. Med. 38:251–254.Google ScholarPubMed
Geschwind, N. 1965. Disconnection syndromes in animals and man. Part I and II. Brain 88:237–294, 585–644.CrossRefGoogle Scholar
Goldstein, J. M., Goodman, J. M., Seidman, L. J., Kennedy, D. N., Makris, N., Lee, H., Tourville, J., Caviness, V. S. Jr., Faraone, S. V., and Tsuang, M. T. 1999. Cortical abnormalities in schizophrenia identified by structural magnetic resonance imaging. Arch. Gen. Psychiatry 56:537–547.CrossRefGoogle ScholarPubMed
Grill-Spector, K., Kushnir, T., Hendler, T., Edelman, S., Itzchat, Y., and Malach, R., 1998. A sequence of object-processing stages revealed by fMRI in the human occipital lobe. Hum. Brain Mapp. 6:316–328.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Gross, C. G., Moore, T., and Rodman, H. R. 2004. Visually guided behavior after V1 lesions in young and adult monkeys and its relation to blindsight in humans. Prog. Brain Res. 144:279–294.CrossRefGoogle Scholar
Hadjikhani, N., Sanchez del Rio, M., Wu, O., Schwartz, E., Bakker, D., Fischl, B., Kwong, K. K., Cutrer, F. M., Rosen, B. R., Tootel, R. H., Sorensen, A. G., and Moskowitz, M. A. 2001. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc. Natl. Acad. Sci. U.S.A. 98:4687–4692.CrossRefGoogle ScholarPubMed
Hecaen, H., and Albert, M. L. 1978. Human Neuropsychology. New York: Wiley.Google Scholar
Heilman, K. M., Rothi, L. J., and Valenstein, E. 1982. Two forms of ideomotor apraxia. Neurology 32:342–346.CrossRefGoogle ScholarPubMed
James, T. W., Culham, J., Humphrey, G. K., Milner, A. D., and Goodale, M. A. 2003. Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. Brain 126:2463–2475.CrossRefGoogle ScholarPubMed
Joseph, R. 1996. Neuropsychology, Neuropsychiatry, and Behavioral Neurology. Baltimore, Md.: Williams and Wilkins.Google Scholar
Karnath, H.-O., Ferber, S., and Himmelbach, M. 2001. Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature 411:950–953.CrossRefGoogle Scholar
Kastner, A., and Ungerleider, L. G. 2001. The neural basis of biased competition in human visual cortex. Neuropsychologia 39(12):1263–1276.CrossRefGoogle ScholarPubMed
Mendez, M. F. 2000. Corticobasal ganglionic degeneration with Balint's syndrome. J. Neuropsychiatry Clin. Neurosci. 12:273–275.CrossRefGoogle ScholarPubMed
Mendez, M. F. 2001. Visuospatial deficits and preserved reading ability in a patient with posterior cortical atrophy. Cortex 37(4):535–543.CrossRefGoogle Scholar
Meltzoff, A. N., and Decety, J. 2003. What imitation tells us about social cognition: a rapprochement between developmental psychology and cognitive neuroscience. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358:491–500.CrossRefGoogle ScholarPubMed
Morris, J. S., DeGelder, B., Weiskrantz, L., and Dolan, R. J. 2001. Differential extrageniculostriate and amygdala responses to presentation of emotional faces in a cortically blind field. Brain 124:1241–1252.CrossRefGoogle Scholar
Nagaratnam, N., Virk, S., and Brdarevic, O. 1996. Musical hallucinations associated with recurrence of a right occipital meningioma. Br. J. Clin. Pract. 50:56–57.Google ScholarPubMed
Niznikiewicz, M., Donnino, R., McCarley, R. W., Nestor, P. G., Iosifescu, D. V., O'Donnell, B., Levitt, J., and Shenton, M. E. 2000. Abnormal angular gyrus asymmetry in schizophrenia. Am. J. Psychiatry 157:428–437.CrossRefGoogle Scholar
Panayiotopoulos, C. P. 1999. Visual phenomena and headache in occipital epilepsy: a review, a systematic study and differentiation from migraine. Epileptic Disord. 1:205–216.Google ScholarPubMed
Parekh, P. I., Spencer, J. W., George, M. S., Gill, D. S., Ketter, T. A., Andreason, P., Herscovitch, P., and Post, R. M. 1995. Procaine-induced increases in limbic rCBF correlate positively with increases in occipital and temporal EEG fast activity. Brain Topogr. 7:209–216.CrossRefGoogle ScholarPubMed
Pessoa, L., Kastner, S., and Ungerleider, L. 2002. Attentional control of the processing of neural and emotional stimuli. Brain Res. 15(1):31–45.Google ScholarPubMed
Pourtois, G., Grandjean, D., Sander, D., and Vuilleumier, P. 2004. Electrophysiological correlates of rapid spatial orienting towards fearful faces. Cereb. Cortex 14(6):619–633.CrossRefGoogle ScholarPubMed
Posner, M. I., and Dehaene, S. 1994. Attentional networks. Trends Neurosci. 17:75–79.CrossRefGoogle ScholarPubMed
Posner, M., and Petersen, S. E. 1990. The attention system of the brain. Annu. Rev. Neurosci. 13:25–42.CrossRefGoogle Scholar
Rauch, S. L., Savage, C. R., Alpert, N. M., Miguel, E. C., Baer, L., Breiter, H. C., Fischman, A. J., Manzo, P. A., Moretti, C., and Jenike, M. A. 1995. A positron emission tomographic study of simple phobic symptom provocation. Arch. Gen. Psychiatry 52:20–28.CrossRefGoogle ScholarPubMed
Redlich, F. C., and Dorsey, J. E. 1945. Denial of blindness by patients with cerebral disease. Arch. Neurol. Psychiatry 53:407–417.CrossRefGoogle Scholar
Rode, G., Perenin, M. T., Honoré, J., and Boisson, D. 1998. Improvement of the motor deficit of neglect patients through vestibular stimulation: evidence for a motor neglect component. Cortex 34:253–261.CrossRefGoogle ScholarPubMed
Rothi, L. J., Heilman, K. M., and Watson, R. T. 1985. Pantomime comprehension and ideomotor apraxia. J. Neurol. Neurosurg. Psychiatry 48:207–210.CrossRefGoogle ScholarPubMed
Rubin, P., Karle, A., Moller-Madsen, S., Hertel, C., Povlsen, U. J., Noring, U., and Hemmingsen, R. 1993. Computerised tomography in newly diagnosed schizophrenia and schizophreniform disorder. A controlled blind study. Br. J. Psychiatry 163:604–612.CrossRefGoogle ScholarPubMed
Ruby, P., and Decety, J. 2001. Effect of subjective perspective taking during simulation of action: a PET investigation of agency. Nature Neurosci. 4:546–550.CrossRefGoogle ScholarPubMed
Ruby, P., Sirigu, A., and Decety, J. 2002. Distinct areas in parietal cortex involved in long-term and short-term action planning: a PET investigation. Cortex 38:321–339.CrossRefGoogle ScholarPubMed
Sakata, H., Taira, M., Kuisunoki, M., Murata, A., and Tanaka, Y. 1997. The parietal association cortex in depth perception and visual control of hand action. Trends Neurosci. 20:350–357.CrossRefGoogle ScholarPubMed
Sandyk, R. 1998. Reversal of a body image disorder (macrosomatognosia) in Parkinson's disease by treatment with AC pulsed electromagnetic fields. Int. J. Neurosci. 93:43–54.CrossRefGoogle ScholarPubMed
Schlaepfer, T. E., Harris, G. J., Tien, A. Y., Peng, L. W., Lee, S., Federman, E. B., Chase, G. A., Barta, P. E., and Pearlson, G. D. 1994. Decreased regional cortical gray matter volume in schizophrenia. Am. J. Psychiatry 151:842–848.Google Scholar
Selemon, L. D., Rajkowska, G., and Goldman-Rakic, P. S. 1995. Abnormally high neuronal density in two widespread areas of the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Arch. Gen. Psychiatry 52:808–818.CrossRefGoogle Scholar
Shenton, M. E., Dickey, C. C., Frumin, M., and McCarley, R. W. 2001. A review of MRI findings in schizophrenia. Schizophr. Res. 49:1–52.CrossRefGoogle Scholar
Sirigu, A., Zalla, T., Pillon, B., Grafman, J., Dubois, B., and Agid, Y. 1995. Planning and script analysis following prefrontal lobe lesions. Ann. N. Y. Acad. Sci. 769:277–288.CrossRefGoogle ScholarPubMed
Tamminga, C. A., Thaker, G. K., Buchanan, R., Kirkpatrick, B., Alphs, L. D., Chase, T. N., and Carpenter, W. T. 1992. Limbic system abnormalities identified in schizophrenia using positron emission tomography with fluorodeoxyglucose and neocortical alterations with deficit syndrome. Arch. Gen. Psychiatry 49:522–530.CrossRefGoogle ScholarPubMed
Tucker, D. M., and Williamson, P. A. 1984. Asymmetric neural control systems in human self regulation. Psychol. Rev. 91:185–215.CrossRefGoogle ScholarPubMed
Vallar, G., Guariglia, C., and Rusconi, M. L. 1997. Modulation of the neglect syndrome by sensory stimulation. In: Thier, P. and Karnath, H.-O. (eds.) Parietal Lobe Contributions to Orientation in 3D Space. Heidelberg: Spinger-Verlag, pp. 555–578.CrossRef
Vallar, G., Lobel, E., Galati, G., Berthoz, A., Pizzamiglio, L., and Bihan, D. 1999. A fronto-parietal system for computing the egocentric spatial frame of reference in humans. Exp. Brain Res. 124:281–286.CrossRefGoogle ScholarPubMed
Vallar, G., Bottini, G., and Sterzi, R. 2003. Anosognosia for left-sided motor and sensory deficits, motor neglect, and sensory hemi-inattention: is there a relationship?Prog. Brain Res. 142:289–301.CrossRefGoogle ScholarPubMed
Weiskrantz, L. 2004. Roots of blindsight. Prog. Brain Res. 144:229–241.Google ScholarPubMed
Whalley, H. C., Simonotto, E., Flett, S., Marshall, L., Ebmeier, K. P., Owens, D. G. C., Goddard, N. H., Johnstone, E. C., and Lawrie, S. M. 2004. fMRI correlates of state and trait effects in subjects at genetically enhanced risk of schizophrenia. Brain 127:478–490.CrossRefGoogle ScholarPubMed
Wheeler, M. E., and Buckner, R. L. 2004. Functional-anatomic correlates of remembering and knowing. Neuroimage 21:1337–1349.CrossRefGoogle ScholarPubMed
Wilkinson, F. 2004. Auras and other hallucinations: windows on the visual brain. Prog. Brain Res. 144:305–320.CrossRefGoogle ScholarPubMed
Wik, G., Fredrikson, M., Ericson, K., Eriksson, L., Stone-Elander, S., and Grieitz, T. 1992. A functional cerebral response to frightening visual stimulation. Psychiatry Res. Neuroimag. 50:15–24.CrossRefGoogle Scholar
Yantis, S., Schwarzbach, J., Serences, J. T., Carlson, R. L., Steinmetz, M. A., Pekar, J. J., and Courtney, S. M. 2002. Transient neural activity in human parietal cortex during spatial attention shifts. Nat. Neurosci. 5(10):995–1002.CrossRefGoogle ScholarPubMed
Zohar, J., Insel, T. R., Berman, K. F., Foa, E. B., Hill, J. L., and Weinberger, D. R. 1989. Anxiety and cerebral blood flow during behavioral challenge: dissociation of central from peripheral and subjective measures. Arch. Gen. Psychiatry 46:505–510.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×