Skip to main content Accessibility help
×
Hostname: page-component-5447f9dfdb-gf5gg Total loading time: 0 Render date: 2025-07-29T09:04:59.580Z Has data issue: false hasContentIssue false

13 - Developmental Pharmacology

The Neonate

from Section 2 - Newborn and Infant Anesthesia

Published online by Cambridge University Press:  09 February 2018

Mary Ellen McCann
Affiliation:
Harvard Medical School, Boston, MA, USA
Christine Greco
Affiliation:
Harvard Medical School, Boston, MA, USA
Kai Matthes
Affiliation:
Harvard Medical School, Boston, MA, USA
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

1.Crawford, J, Terry, M, Rourke, G. Simplification of drug dosage calculation by application of the surface area principle. Pediatrics. 1950;5:783–90.10.1542/peds.5.5.783CrossRefGoogle ScholarPubMed
2.Holliday, M, Segar, W. The maintenance need for water in parenteral fluid therapy. Pediatrics. 1957;19:823–32.10.1542/peds.19.5.823CrossRefGoogle ScholarPubMed
3.Anderson, B, Holford, N. Tips and traps analyzing pediatric PK data. Pediatric Anesthesia. 2011;21:222–37.10.1111/j.1460-9592.2011.03536.xCrossRefGoogle ScholarPubMed
4.Robiquet, T. Rapport sur un memoire adresse a l’Academie royale de medecine par MM Sarrus et Rameaux. Bull Acad R Med. 1839;3:1094.Google Scholar
5.Brody, S: Bioenergetics and Growth: With Special Reference to the Efficiency Complex. New York: Reinhold Publishing Corporation; 1945.Google Scholar
6.Rigby-Jones, AE, Sneyd, JR. Pharmacokinetics and pharmacodynamics-is there anything new? Anesthesia. 2012;67:111.CrossRefGoogle ScholarPubMed
7.Anderson, B, Allegaert, K, Holford, N. Population clinical pharmacology of children: modelling covariate effects. Eur J Pediatr. 2006;165:819–29.Google ScholarPubMed
8.Edginton, A. Knowledge-driven approaches for the guidance of first-in-children dosing. Pediatric Anesthesia. 2011;21:206–13.10.1111/j.1460-9592.2010.03473.xCrossRefGoogle ScholarPubMed
9.Rhodin, M, Anderson, B, Peters, A, et al. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol. 2009;24:6776.10.1007/s00467-008-0997-5CrossRefGoogle ScholarPubMed
10.de Wildt, S, Kearns, G, Leeder, J, van den Anker, J. Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet. 1999;37:485505.10.2165/00003088-199937060-00004CrossRefGoogle ScholarPubMed
11.Cella, M, Knibbe, C, Danhof, M, Pascua, OD. What is the right dose for children? Br J Clin Pharmacol. 2010;70:597603.10.1111/j.1365-2125.2009.03591.xCrossRefGoogle Scholar
12.Kearns, G, Abdel-Rahman, S, Alander, S, et al. Developmental pharmacology: drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349:1157–67.CrossRefGoogle ScholarPubMed
13.Marsh, D, Hatch, D, Fitzgerald, M, et al. Opioid systems and the newborn. Br J Anaes. 1997;79:787–95.CrossRefGoogle ScholarPubMed
14.Klitzner, T, Friedman, W. A diminished role for the sarcoplasmic reticulum in newborn myocardial contraction: effects of ryanodine. Ped Res. 1989;26:98101.10.1203/00006450-198908000-00005CrossRefGoogle ScholarPubMed
15.Johnson, T, Rostami-Hodjegan, A. Resurgence in the use of physiologically based pharmacokinetic models in pediatric clinical pharmacology: parallel shift in incorporating the knowledge of biological elements and increased applicability to drug development and clinical practice. Paediatr Anesth. 2011;21:291301.10.1111/j.1460-9592.2010.03323.xCrossRefGoogle ScholarPubMed
16.Johnson, T, Rostami-Hodjegan, A, Tucker, G. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet. 2006;45:931–56.10.2165/00003088-200645090-00005CrossRefGoogle ScholarPubMed
17.Keys, T. The History of Surgical Anesthesia. New York: Dover Publications; 1963.Google Scholar
18.Coté, CJ. Pediatric anesthesia. In: Miller, RD, Eriksson, LI, Fleisher, LA, et al., editors. Miller’s Anesthesia, 7th edn. Philadelphia, PA: Churchill Livingstone; 2010.Google Scholar
19.Vlajkovic, G, Sindjelic, R. Emergence delirium in children: many questions, few answers. Anesth Analg. 2007;4:8491.10.1213/01.ane.0000250914.91881.a8CrossRefGoogle Scholar
20.Friedman, W. The intrinsic physiologic properties of the developing heart. Prog Cardiovasc Dis. 1972;15:87111.10.1016/0033-0620(72)90006-0CrossRefGoogle ScholarPubMed
21.Blanco, C, Dawes, G, Hanson, M. Carotid baroreceptors in fetal and newborn sheep. Ped Res. 1988;24:342–6.CrossRefGoogle ScholarPubMed
22.Friedman, W, George, B. Treatment of congestive heart failure by altering loading conditions of the heart. J Ped. 1985;106:697706.10.1016/S0022-3476(85)80339-5CrossRefGoogle ScholarPubMed
23.Holden, K, Morgan, J, Krauss, A. Incomplete baroreceptor responses in newborn infants. Amer J Perinat. 1985;2:31–4.10.1055/s-2007-999907CrossRefGoogle ScholarPubMed
24.Gournay, V, Drouin, E, Rozé, J. Development of baroreflex control of heart rate in preterm and full term infants. Arch Dis Child Fetal Neonatal Ed. 2002;86: F151–4.10.1136/fn.86.3.F151CrossRefGoogle ScholarPubMed
25.Patton, D, Hanna, B. Postnatal maturation of baroreflex heart rate control in neonatal swine. Can J Cardiol. 1994;10:233–8.Google ScholarPubMed
26.Holzman, R, van der Velde, M, Kaus, S, et al. Sevoflurane depresses myocardial contractility less than halothane during induction of anesthesia in children. Anesthesiology. 1996;85:1260–7.10.1097/00000542-199612000-00006CrossRefGoogle ScholarPubMed
27.Steur, R, Perez, R, De Lange, J. Dosage scheme for propofol in children under 3 years of age. Paediatr Anaesth. 2004;14:462–7.10.1111/j.1460-9592.2004.01238.xCrossRefGoogle ScholarPubMed
28.Jacqz-Aigrain, E, Burtin, P. Clinical pharmacokinetics of sedatives in neonates. Clin Pharmacokinet. 1996;31:423–43.10.2165/00003088-199631060-00003CrossRefGoogle ScholarPubMed
29.Anderson, B, Allegaert, K. The pharmacology of anaesthetics in the neonate. Best Pract Res Clin Anaesth. 2010;24:419–31.10.1016/j.bpa.2010.02.019CrossRefGoogle ScholarPubMed
30.Pacifici, G. Clinical pharmacology of midazolam in neonates and children: effect of disease – a review. Int J Pediatr., 2014. doi: 10.1155/2014/309342.CrossRefGoogle ScholarPubMed
31.de Wildt, S, Kearns, G, Hop, W, et al. Pharmacokinetics and metabolism of intravenous midazolam in preterm infants. Clin Pharmacol Ther. 2001;70:525–31.10.1016/S0009-9236(01)15882-0CrossRefGoogle ScholarPubMed
32.Burtin, P, Jacqz-Aigrain, E, Girard, P, et al. Population pharmacokinetics of midazolam in neonates. Clin Pharmacol Ther. 1994;56:615–25.10.1038/clpt.1994.186CrossRefGoogle ScholarPubMed
33.Wermeling, D, Miller, J, Archer, S, Manaligod, J, Rudy, A. Bioavailability and pharmacokinetics of lorazaepam after intranasal, intravenous and intramuscular administration. J Clin Pharmacol. 2001;41:1225–31.10.1177/00912700122012779CrossRefGoogle ScholarPubMed
34.McDermott, C, Kowalczyk, A, Schnitzler, E, et al. Pharmacokinetics of lorazepam in critically ill neonates with seizures. J Pediatr. 1992;120:479–83.10.1016/S0022-3476(05)80925-4CrossRefGoogle ScholarPubMed
35.Chrysostomou, C, Zeballos, T. Use of dexmedetomidine in a pediatric heart transplant patient. Pediatr Cardiol. 2005;26:651–4.CrossRefGoogle Scholar
36.Finkel, J, Johnson, Y, Quezado, Z. The use of dexmedetomidine to facilitate acute discontinuation of opioids after cardiac transplantation in children. Crit Care Med. 2005;33:2110–12.10.1097/01.CCM.0000178183.21883.23CrossRefGoogle ScholarPubMed
37.Ard, J, Doyle, W, Bekker, A. Awake craniotomy with dexmedetomidine in pediatric patients. J Neurosurg Anesth. 2003;15:263–6.10.1097/00008506-200307000-00015CrossRefGoogle ScholarPubMed
38.Tobias, J, Berkenbosch, J. Sedation during mechanical ventilation in infants and children: dexmedetomidine versus midazolam. J Neurosurg Anesthesiol. 2003;15:263–6.Google Scholar
39.Berkenbosch, J, Tobias, J. Development of bradycardia during sedation with dexmedetomidine in an infant concurrently receiving digoxin. Pediatr Crit Care Med. 2003;4:203–5.10.1097/01.PCC.0000059737.86673.28CrossRefGoogle Scholar
40.Chrysostomou, C, Schulman, S, Castellanos, M, et al. A phase II/III, multicenter, safety, efficacy, and pharmacokinetic study of dexmedetomidine in preterm and term neonates. J Pediatr. 2014;164:276–82.10.1016/j.jpeds.2013.10.002CrossRefGoogle ScholarPubMed
41.Potts, A, Warman, G, Anderson, B. Dexmedetomidine disposition in children: a population analysis. Ped Anaesth. 2008;18:722–30.Google ScholarPubMed
42.Talke, P, Richardson, C, Scheinin, M, Fisher, D. Postoperative pharmacokinetics and sympatholytic effects of dexmedetomidine. Anesth Analg. 1997;85:1136–42.CrossRefGoogle ScholarPubMed
43.Talke, P, Chen, R, Thomas, B, et al. The hemodynamic and adrenergic effects of perioperative dexmedetomidine infusion after vascular surgery. Anesth Analg. 2000;90:834–9.10.1213/00000539-200004000-00011CrossRefGoogle ScholarPubMed
44.Hsu, Y, Cortinez, L, Robertson, K, et al. Dexmedetomidine pharmacodynamics: part I. Anesthesiology. 2004;101:1066–76.10.1097/00000542-200411000-00005CrossRefGoogle ScholarPubMed
45.Cortinez, L, Hsu, Y, Sum-Ping, S, et al. Dexmedetomidine pharmacodynamics: part II. Anesthesiology. 2004;101:1077–83.10.1097/00000542-200411000-00006CrossRefGoogle ScholarPubMed
46.Petroz, G, Sikich, N, James, M, et al. A phase I, two-center study of the pharmacokinetics and pharmacodynamics of dexmedetomidine in children. Anesthesiology. 2006;105:1098–110.10.1097/00000542-200612000-00009CrossRefGoogle ScholarPubMed
47.Berkenbosch, J, Wankum, P, Tobias, J. Prospective evaluation of dexmedetomidine for noninvasive procedural sedation in children. Pedatr Crit Care Med. 2005;6:435–9.Google ScholarPubMed
48.Bouwmeester, N, van den Anker, J, Hop, W, Anand, K, Tibboel, D. Age- and therapy-related effects on morphine requirements and plasma concentrations of morphine and its metabolites in postoperative infants. Br J Anaesth. 2003;90:642–52.10.1093/bja/aeg121CrossRefGoogle ScholarPubMed
49.Bouwmeester, N, Anderson, B, Tibboel, D, Holford, N. Developmental pharmacokinetics of morphine and its metabolites in neonates, infants and young children. Br J Anaesth. 2004;92:208–17.10.1093/bja/aeh042CrossRefGoogle ScholarPubMed
50.Tegeder, I, Lotsch, J, Geisslinger, G. Pharmacokinetics of opioids in liver disease. Clin Pharmacokinetics. 1999;37:1740.10.2165/00003088-199937010-00002CrossRefGoogle ScholarPubMed
51.Davis, P, Wilson, A, Siewers, R. The effects of cardiopulmonary bypass on remifentanil kinetics in children undergoing atrial septal defect repair. Anesth Analg. 1999;89:904–8.10.1213/00000539-199910000-00016CrossRefGoogle ScholarPubMed
52.Ross, A, Davis, P, Dear, G, et al. Pharmacokinetics of remifentanil in anesthetized pediatric patients undergoing elective surgery or diagnostic procedures. Anesth Analg. 2001;93:1393–401.10.1097/00000539-200112000-00008CrossRefGoogle ScholarPubMed
53.Welzing, L, Roth, B. Experience with remifentanil in neonates and infants. Drugs. 2006;66:1339–50.10.2165/00003495-200666100-00003CrossRefGoogle ScholarPubMed
54.Greeley, W, de Bruijn, N, Davis, D. Sufentanil pharmacokinetics in pediatric cardiovascular patients. Anesth Analg. 1987;66:1067–72.10.1213/00000539-198711000-00001CrossRefGoogle ScholarPubMed
55.Lundeberg, S, Roelofse, J. Aspects of pharmacokinetics and pharmacodynamics of sufentanil in pediatric practice. Paediatr Anaesth. 2011;21:274–9.10.1111/j.1460-9592.2010.03411.xCrossRefGoogle ScholarPubMed
56.Pokela, M, Ryhanen, P, Koivisto, M, Olkkola, K, Saukkonen, A. Alfentanil-induced rigidity in newborn infants. Anesth Analg. 1992;75:252–7.10.1213/00000539-199208000-00017CrossRefGoogle ScholarPubMed
57.Anderson, B, van Lingen, R, Hansen, T, Lin, Y, Holford, N. Acetaminophen developmental pharmacokinetics in premature neonates and infants: a pooled population analysis. Anesthesiology. 2002;96:1336–45.10.1097/00000542-200206000-00012CrossRefGoogle ScholarPubMed
58.Allegaert, K, Naulaers, G, Vanhaesebrouck, S, Anderson, B. The paracetamol concentration-effect relation in neonates. Pediatric Anesthesia. 2013;23:4550.10.1111/pan.12076CrossRefGoogle ScholarPubMed
59.Playfor, S, Jenkins, I, Boyles, C, et al. Consensus guidelines for sustained neuromuscular blockade in critically ill children. Pediatr Anesth. 2007;17:881–7.10.1111/j.1460-9592.2007.02313.xCrossRefGoogle ScholarPubMed
60.Martin, L, Bratton, S, O’Rourke, P. Clinical uses and controversies of neuromuscular blocking agents in infants and children. Crit Care Med.. 1999;27:1358–68.10.1097/00003246-199907000-00030CrossRefGoogle ScholarPubMed
61.Martyn, J, White, D, Gronert, G, Jaffe, R, Ward, J. Up-and-down regulation of skeletal muscle acetylcholine receptors. Anesthesiology. 1992;76:822–43.Google ScholarPubMed
62.Meakin, G, McKiernan, E, Morris, P, Baker, R. Dose–reponse curves for suxamethonium in neonates, infants and children. Br J Anaesth. 1989;62:655–8.CrossRefGoogle Scholar
63.Hospira Inc. Succinylcholine chloride IV injection [Package insert]. Lake Forest, IL, Hospira, Inc, 2005Google Scholar
64.Goudsouzian, N, Ryan, J, Savarese, J. The neuromuscular effects of pancuronium in infants and children. Anesthesiology. 1974;41:95–8.10.1097/00000542-197407000-00027CrossRefGoogle ScholarPubMed
65.Meretoja, O, Wirtavuori, K, Neuvonen, P. Age-dependence of the dose–response curve of vecuronium in pediatric patients during balanced anesthesia. Anesth Analg. 1988;67:21–6.10.1213/00000539-198801000-00004CrossRefGoogle ScholarPubMed
66.Fisher, D, Castagnoli, K, Miller, R. Vecuronium kinetics and dynamics in anesthetized infants and children. Clin Pharmacol Ther. 1985;37:402–6.CrossRefGoogle ScholarPubMed
67.Foldes, F, Nagashima, H, Nguyen, H, et al. The neuromuscular effects of ORG9426 in patients receiving balanced anesthesia. Anesthesiology. 1991;75:191–6.10.1097/00000542-199108000-00004CrossRefGoogle ScholarPubMed
68.Woelfel, S, Brandom, B, Cook, D, Sarner, J. Effects of bolus administration of ORG-9426 in children during nitrous oxide–halothane anesthesia. Anesthesiology. 1992;76:939–42.10.1097/00000542-199206000-00011CrossRefGoogle ScholarPubMed

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×