Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T08:20:33.538Z Has data issue: false hasContentIssue false

7 - Fabrication of nanoscale structures using ion beams

Published online by Cambridge University Press:  12 January 2010

Ampere A. Tseng
Affiliation:
Arizona State University Department of Mechanical and Aerospace Engineering, Tempe, Arizona
Nan Yao
Affiliation:
Princeton University, New Jersey
Get access

Summary

Introduction

Nano-fabrication aims at building nanoscale structures, which can be used as components, devices, or systems, in large quantities with potentially low costs. Here, a nanoscale structure is characterized by a feature size in the range of 0.1 to 100 nm. Recently, ion beams have become increasingly popular tools for the fabrication of various types of nanoscale structures for different applications. In this chapter, the capabilities of the ion beam (IB) technology for nano-fabrication using the projection printing and direct writing approaches are discussed and examined.

The IB technology has many advantages over other energetic particle beams in nano-fabrication. For example, when compared to electrons, ions are much heavier and can strike with much greater energy density on the target at relatively short wavelengths to directly transfer patterns on hard materials (such as semiconductors, metals, or ceramics) without producing forward- and backscattering. Thus, the feature size of the patterns is directly dictated by the beam size and the interaction of the beam with the material considered. On the other hand, the electron beam or photon beam can only effectively write on or expose soft materials (such as photo or e-beam resists), and the corresponding feature sizes are determined by the proximity of the backscattered electrons or wave diffraction limits. Furthermore, the lateral exposure in IB is very low; thus, just exposing the right areas.

Type
Chapter
Information
Focused Ion Beam Systems
Basics and Applications
, pp. 187 - 214
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tseng, A. A.. J. Micromech. Microeng., 14 (2004), R15–34.CrossRef
Tseng, A. A.. Small, 1 (2005), 594–608.CrossRef
Tseng, A. A.. Small, 1 (2005), 924–39.CrossRef
Löeschner, H., Fantner, E. J., Korntner, R.et al. Mat. Res. Soc. Symp. Proc., 739 (2002), 3–12.CrossRef
Kaesmaier, R., Ehrmann, A. and Löeschner, H.. Microelectron. Eng., 57–58 (2001), 145–53.CrossRef
Ngo, V. V., Akker, B., Leung, K. N.et al. J. Vac. Sci. Technol. B, 21 (2003), 2297–303.CrossRef
Jiang, X., Ji, Q., Ji, L., Chang, A. and Leung, K. -N.. J. Vac. Sci. Technol. B, 21 (2003), 2724–7.CrossRef
Tandon, U. S.. Vacuum, 43 (1992), 241–51.CrossRef
Melngailis, J., Mondelli, A. A., Berry, I. L. and Mohondro, R.. J. Vac. Sci. Technol. B, 16 (1998), 927–57.CrossRef
Bruenger, W. H., Torkler, M., Weiss, M.et al. J. Vac. Sci. Technol. B, 17 (1999), 3119–21.CrossRef
Arshak, K., Mihov, M., Arshak, A., McDonagh, D. and Sutton, D.. Microelectron. Eng., 73–74 (2004), 144–51.CrossRef
Hirscher, S., Kaesmaier, R., Domke, W. -D.et al. Microelectron. Eng., 57–58 (2001), 517–24.CrossRef
Löeschner, H., Stengl, G., Kaesmaier, R. and Wolter, A.. J. Vac. Sci. Technol. B, 19 (2001), 2520–4.CrossRef
Bruenger, W. H., Torkler, M. and Buchmann, L. -M.. J. Vac. Sci. Technol. B, 15 (1997), 2355–7.CrossRef
Bruenger, W. H., Torkler, M., Dzionk, C.et al. Microelectron. Eng., 53 (2000), 605–8.CrossRef
Dietzel, A., Berger, R., Grimm, H.et al. IEEE Trans Magnetics, 38 (2002), 1952–4.CrossRef
Dietzel, A., Berger, R., Loeschner, H.et al. Adv. Mater., 15 (2003), 1152–5.CrossRef
Bruenger, W. H., Dzionk, C., Berger, R.et al. Microelectron. Eng., 61–62 (2002), 295–300.CrossRef
K. Edinger. Direct-Write Technologies for Rapid Prototyping Applications: Sensors, Electronics, and Integrated Power Sources, ed. Pique, A. and Chrisey, D. B. (San Diego, CA: Academic Press, 2002), p. 347–83.Google Scholar
Reyntjens, S. and Puers, R.. J. Micromech. Microeng, 11 (2001), 287–300.CrossRef
Biersack, J. P. and Haggmark, L. G.. Nucl. Inst. Meth. Phys. Res. B, 174 (1980), 257–69.CrossRef
Zeigler, J. F., Biersack, J. P. and Littmark, U.. The Stopping Range of Ions in Solids (New York: Pergamon, 1985).Google Scholar
Blauner, P. G., Butt, Y., Ro, J. S. and Melngailis, J.. J. Vac. Sci. Technol. B, 7 (1989), 609–17.CrossRef
Xu, X., Ratta, A. D. D., Sosonkina, J. and Melngailis, J.. J. Vac. Sci. Technol. B, 10 (1992), 2675–80.CrossRef
Almen, O. and Burce, G.. Nucl. Inst. Meth., 11 (1961), 257–78.CrossRef
Robinson, M. T. and Southern, A. L.. J. Appl. Phys., 38 (1967), 2969–73.CrossRef
Carter, G. and Colligon, J. S.. Ion Bombardment of Solids (New York: Elsevier, 1968), Chapter 7.Google Scholar
Nenadovic, T. M., Fotiric, Z. B. and Dimitrijevic, T. S.. Surf. Sci., 33 (1972), 607–16.CrossRef
EerNisse, E. P.. Appl. Phys. Lett., 29 (1976), 14–17.CrossRef
Müller, K. P., Weigmann, U. and Burghause, H.. Microelectron. Eng., 5 (1986), 481–9.CrossRef
Poate, J. M., Brown, W. L., Homer, R. and Augustyniak, W. M.. Nucl. Inst. Meth., 132 (1976), 345–9.CrossRef
Yamaguchi, A. and Nishikawa, T.. J. Vac. Sci. Technol. B, 13 (1995), 962–6.CrossRef
Pellerin, J. G., Shedd, G. M., Griffs, D. P. and Russell, P. E.. J. Vac. Sci. Technol. B, 7 (1989), 1810–12.CrossRef
Santamore, D., Edinger, K., Orloff, J. and Melngailis, J.. J. Vac. Sci. Technol. B, 15 (1997), 2346–9.CrossRef
L. Bischoff and J. Teichert. Forschungszentrum, Rossendorf, Germany, FZR-217 (1998); 36 pp.
Frey, L., Lehrer, C. and Ryssel, H.. Appl. Phys. A, 76 (2003), 1017–23.CrossRef
Southern, A. L., Willis, W. R. and Robinson, M. T.. J. Appl. Phys., 34 (1963), 153–63.CrossRef
Sommerfeldt, H., Mashkova, E. S. and Molchanov, V. A.. Phys. Lett., 38A (1972), 237–8.CrossRef
Andersen, H. H. and Bay, H. L.. J. Appl. Phys., 46 (1975), 1919–21.CrossRef
Blank, P. and Wittmaack, K.. J. Appl. Phys., 50 (1979), 1519–28.CrossRef
Kang, S. T., Shimizu, R. and Okutani, T.. Jpn. J. Appl. Phys., 18 (1979), 1717–25.CrossRef
Morgan, A. E., Grefte, H. A. M., Warmoltz, N. and Werner, H. W.. Appl. Surf. Sci., 7 (1981), 372–92.CrossRef
Zalm, P. C.. J. Appl. Phys., 54 (1983), 2660–6.CrossRef
Lehrer, C., Frey, L., Petersen, S. and Ryssel, H.. J. Vac. Sci. Technol. B, 19 (2001), 2533–8.CrossRef
Yamamura, Y., Itakawa, Y. and Itoh, N.. Angular Dependence of Sputtering Yields of Monatomic Solids, IIPJ-AM-26, Nagoya University, Nagoya, Japan (1983).Google Scholar
Vasile, M., Xie, J. and Nassar, R.. J. Vac. Sci. Technol. B, 17 (1999), 3085–90.CrossRef
Lugstein, A., Basnar, B., Smoliner, J. and Bertagnolli, E.. Appl. Phys. A, 76 (2003), 545–8.CrossRef
Custer, J. S., Thompson, M. O., Jacobson, D. C.et al. Appl. Phys. Lett., 64 (1994), 437–9.CrossRef
Li, H. W., Kang, D. J., Blamire, M. G. and Huck, W. T. S.. Nanotechnology, 14 (2003), 220–3.CrossRef
Tseng, A. A., Insua, I. A., Park, J. S., Li, B. and Vakanas, G. P.. J. Vac. Sci. Technol. B, 22 (2004), 82–9.CrossRef
Kim, S. -J., Latyshev, Y. I. and Yamashta, T.. Appl. Phys. Lett., 74 (1999), 1156–8.CrossRef
Tseng, A. A., Leeladharan, B., Li, B., Insua, I. A. and Chen, C. D.. Int. J. Nanoscience, 2 (2003).CrossRef
Hiramoto, T., Hirakawa, K. and Ikoma, T.. J. Vac. Sci. Technol. B, 6 (1988), 1014–17.CrossRef
Sumita, T., Nagai, T., Kubota, H., Matsukawa, T. and Ohdomari, I.. Synthetic Metals, 103 (1999), 2234–7.CrossRef
Shinada, T., Koyama, H., Hinoshita, C., Imamura, K. and Ohdomari, I.. Jpn J. Appl. Phys., Part 2, 41 (2002), L287–90.CrossRef
Matsui, S., Kaito, T., Fujita, J.et al. J. Vac. Sci. Technol. B, 18 (2000), 3181–4.CrossRef
Watanabe, K., Morita, T., Kometani, R.et al. J. Vac. Sci. Technol. B, 22 (2004), 22–6.CrossRef
Edinger, K.. J. Vac. Sci. Technol. B, 17 (1999), 3058–62.CrossRef
Casey, J. D., Phaneuf, M., Chandler, C.et al. J. Vac. Sci. Technol. B, 20 (2002), 2682–5.CrossRef
Taniguchi, J., Ohno, N., Takeda, S., Miyamoto, I. and Komuro, M.. J. Vac. Sci. Technol. B, 16 (1998), 2506–10.CrossRef
Stanishevsky, A.. Thin Solid Films, 398–399 (2001), 560–5.CrossRef
Adams, D. P., Vasile, M. J., Mayer, T. M. and Hodges, V. C.. J. Vac. Sci. Technol. B, 21 (2003), 2334–43.CrossRef
Yamaguchi, H.. J. de Physique, Colloque C6, 48 suppl. 11 (1987), C6.165–70.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×