Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T00:03:58.944Z Has data issue: false hasContentIssue false

11 - Three-dimensional visualization of nanostructured materials using focused ion beam tomography

Published online by Cambridge University Press:  12 January 2010

Derren Dunn
Affiliation:
IBM Microelectronics
Alan J. Kubis
Affiliation:
University of Virginia
Robert Hull
Affiliation:
University of Virginia
Nan Yao
Affiliation:
Princeton University, New Jersey
Get access

Summary

Introduction

One of the fundamental goals of materials science is to establish structure property relationships. Historically, structure property relationships in materials have been established with great success using imaging and spectroscopic methods that measure signals that vary in one and two dimensions. For example, X-ray and neutron diffraction techniques are typically used to measure average physical and crystallographic properties of relatively large volumes of material. While different modes exist for these techniques such as spot modes and surface reflectance modes, they effectively average over volumes of materials properties and produce information that varies in at most two-dimensions. Auger electron spectroscopy (AES) and secondary ion mass spectroscopy (SIMS), while capable of high spatial resolution in surface mapping modes and depth profiling modes, are traditionally used to produce maps and profiles in one and two dimensions.

High-resolution imaging techniques, such as scanning and transmission electron microscopy, generally produce two-dimensional real space intensity maps of surfaces or an image that has been averaged through a sample thickness, as is the case in conventional transmission electron microscopy.

Scanning probe microscopy techniques, such as atomic force microscopy and scanning tunneling microscopy, may be regarded as providing a measure of surface variation in three dimensions. In particular, both techniques are capable of measuring in-plane variations in position with near atomic scale lateral resolution as well as sub-atomic scale measurements parallel to a local surface normal. These scanning probe techniques are limited to surface measurements, however, and in general cannot directly measure sub-surface information.

Type
Chapter
Information
Focused Ion Beam Systems
Basics and Applications
, pp. 295 - 317
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Copley, D. C., Eberhard, J. W. and Mohr, G. A. J. of Metals, 46 (1994), 14–26.
Defrise, M.. Comput. Med. Imag. Graph., 25 (2001), 113–16.CrossRef
Owens, J. W., Butler, L. G., Dupard-Julien, C. and Garner, K.. Mater. Res. Bull., 36 (2001), 1595–602.CrossRef
Babout, L., Maire, E., Buffiere, J. Y. and Fougeres, R.. Acta. Mater., 49 (2001), 2055–63.CrossRef
Lin, C. L. and Miller, J. D.. J. Chem. Eng., 77 (2000), 79–86.CrossRef
Lu, D., Zhou, M.Dunsmuir, J. H. and Thomann, H.. Mag. Res. Imaging, 19 (2001), 443–8.CrossRef
Martin, C. F., Josserond, C., Salvo, L.et al. Scripta Mater., 42 (2000), 375–81.CrossRef
Guvenilir, A., Breunig, T. M., Kinney, J. H. and Stock, S. R.. Acta. Mater., 45 (1997), 1977–87.CrossRef
Ludwig, W. and Bellet, D.. Mater. Sci. Eng., A281 (2000), 198–203.CrossRef
H. Stegmann, H. J. Engelmann and E. Zschech. Microelectron. Eng., 65, 171–83.
A. Tonomura. Electron Holography. Springer Series in Optical Sciences, Vol. 70 (New York: Springer-Verlag), pp. 41–2.
Miller, M. K.. Mater. Charac., 44 (2000), 11–27.CrossRef
Deconihout, B., Pareige, C., Pareige, P., Blavette, D. and Menand, A.. Microsc. Microanal., 5 (1999), 39–47.CrossRef
Blavette, D., Bostel, A. and Sarrau, J. M.. Nature, 6428 (1993), 432–5.CrossRef
Kelly, T. F. and Gribb, A. A.. Microscopy Today, September/October (2003), 8–12.CrossRef
Kelly, T. F., Camus, P. P., Larson, D. J., Holzman, L. M. and Bajikar, S. S.. Ultramicroscopy, 60 (1996), 29.CrossRef
Kelly, T. F. and Larson, D. J.. Mater. Charac., 24 (2000), 59.CrossRef
Mangan, M. A., Lauren, P. D. and Shiflet, G. J.. J. Microsc., 188 (1997), 36–41.CrossRef
Mangan, M. A. and Shiflet, G. J.. Scripta Mater., 37 (1997), 517–22.CrossRef
Soto, G. E., Young, S. J. and Ellisman, M. H.. NeuroImage, 1 (1994), 230–43.CrossRef
Neidrig, H. and Rau, E. I.. Nucl. Instrum. Methods Phys. Res. B, 142 (1998), 523–34.CrossRef
Magerle, R.. Phys. Rev. Lett., 85 (2000), 2749–52.CrossRef
Jamieson, D. N.. Nucl. Instrum. Methods Phys. Res. B, 136/138 (1998), 1–13.CrossRef
Malmqvist, K. G.. Nucl. Instrum. Methods Phys. Res. B, 104 (1995), 138–51.CrossRef
Schofield, R. M. S.. Nucl. Instrum. Methods Phys. Res. B, 104, (1995), 212–21.CrossRef
Sakellariou, A.Cholewa, M., Saint, A. and Legge, G. J. F.. Nucl. Instrum. Methods Phys. Res. B, 130 (1997), 253–8.CrossRef
Ng, Y. K., Orlic, I., Liew, S. C.et al. Nucl. Instrum. Methods Phys. Res. B, 130 (1997), 109–12.CrossRef
Benninghoven, A., Rudenauer, F. G. and Werner, H. W.. Secondary Ion Mass Spectrometry Basis Concepts, Instrumental Aspects, Applications and Trends (New York: John Wiley and Sons, 1987).Google Scholar
Hutter, H. and Grasserbauer, M.. Mikrochim. Acta, 107 (1992), 137–48.CrossRef
Patkin, A. J. and Morrison, G. H.. Anal. Chem., 54 (1982), 2–5.CrossRef
McIntyre, N. S., Davidson, R. D., Weisener, C. G.et al. Surf. Interface Anal., 18 (1992), 601–3.CrossRef
Lu, S. F., Mount, G. R., McIntyre, N. S. and Fenster, A.. Surf. Interface Anal., 21 (1994), 177–83.CrossRef
Hutter, H., Nowikow, K. and Gammer, K.. Appl. Surf. Sci., 179 (2001), 161–6.CrossRef
Gammer, K., Musser, S. and Hutter, H.. Appl. Surf. Sci., 179 (2001), 240–4.CrossRef
Wagter, M. L., Clarke, A. H., Taylor, K. F., Heide, P. A. W. and McIntyre, N. S., Surf. Interface Anal., 25 (1997), 788–9.3.0.CO;2-W>CrossRef
Steiger, W., Rudenauer, F., Gnaser, H., Pollinger, P. and Studnicka, H.. Mikrochim. Acta Supp., 10 (1983), 111–17.CrossRef
Satoh, H., Owari, M. and Nihei, Y.. J. Vac. Sci. Technol.B, 9 (1991), 2638–41.CrossRef
Nihei, Y.. J. Surf. Anal., 3 (1997), 178–84.
Nihei, Y., Tomiyasu, B., Sakamoto, T. and Owari, M.. J. Trace Microprobe Tech., 15 (1997), 593–9.
Tomiyasu, B., Fukuju, I., Komatsubara, I., Owari, M. and Nihei, Y.. Nucl. Instrum. Methods Phys. Res. B, 136/138 (1998), 1028–33.CrossRef
N. J. Montgomery, D. S. McPhail, R. J. Chater and T. Dingle. Secondary Mass Spectrometry SIMS X I, ed. Gillen, G., Lareau, R., Bennett, J. and Stevie, F. (New York: John Wiley and Sons, 1998), pp. 631–4.Google Scholar
Wang, Y. Z., Revie, R. W., Phaneuf, M. W. and Li, J.. Fract. Eng. Mater. Struct., 22 (1999), 251–6.CrossRef
Takanashi, K., Wu, H., Ono, N.et al. Inst. Phys. Conf., Ser., 165 (2000), 9–13.
Sakamoto, T., Takanashi, K., Cheng, Z. H.et al. Inst. Phys. Conf. Ser., 165 (2001), 9–13.
Lohmann, K., Gundelfinger, E. D., Scheich, H.et al. J. Neurosci. Meth., 84 (1998), 143–54.CrossRef
Herman, G. T., Zheng, J. and Bucholtz, C. A.. IEEE Comput. Graphics Appl., 12 (1992), 69–79.CrossRef
Raya, S. P. and Udupa, J. K.. IEEE Trans. Med. Imag., 9 (1990), 32–42.CrossRef
Levoy, M.. IEEE Comput. Graphics Appl., 8 (1988), 29–37.CrossRef
Drebin, R. A., Carpenter, L. and Hanrahan, P.. Comput. Graphics, 22 (1988), 65–74.CrossRef
Dunn, D. N. and Hull, R.. Appl. Phys. Lett., 75 (1999), s3414–16.CrossRef
Rudenauer, F. G. and Steiger, W.. Ultramicroscopy, 25 (1988), 115–24.CrossRef
Sigmund, P.. Phys. Rev., 184 (1969), 383–416.CrossRef
Schiott, H. E.. Radiat. Eff., 6 (1970) 107–13.CrossRef
Orloff, J.. Rev. Sci. Instrum., 64 (1993), 1105–29.CrossRef
Rayaand, S. P. and Udupa, J.. IEEE Trans. Medical Imaging, 9 (1990), 32–42.
Herman, G., Zheng, J. and Bucholtz, C. A.. IEEE Comput. Graphics Appli., 70 (1992), 69–79.CrossRef
Haines, E.. Graphics Gems IV (New York: Academic Press, 1994), pp. 24–46.Google Scholar
J. Russ. The Image Processing Handbook (Boca Raton, FL: CRC Press), pp. 161–427.
Kubis, A. J., Vandervelde, T. E., Bean, J. C., Dunn, D. N. and Hull, R.. Mater. Res. Soc. Symp. Proc., 818 (2004), M14.6.1–M14.6.7.CrossRef
Tersoff, J., Teichert, C. and Lagally, M. G.. Phys. Rev. Lett., 76 (1996), 1675–8.CrossRef
Liu, F., Davenport, S. E., Evans, H. M. and Lagally, M. G.. Phys. Rev. Lett., 82 (1999), 2528–31.CrossRef
Jousten, K., Bohringer, K., Borret, R. and Kalbitzer, S.. Ultramicroscopy, 26 (1988), 301.CrossRef
W. Thompson, A. Armstrong, S. Etchin, R. Percival and A. Saxonis. Ion–Solid Interactions for Materials Modification and Processing. Mater. Res. Soc. Symp. (1996), pp. 687–93.
Dunn, D. N., Shiflet, G. J. and Hull, R.. Rev. Sci. Instrum., 73 (2002), 330.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×