Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-16T02:44:41.252Z Has data issue: false hasContentIssue false

11 - Applications of micro- and nanofibers, and micro- and nanoparticles: healthcare, nutrition, drug delivery and personal care

Published online by Cambridge University Press:  05 June 2014

Alexander L. Yarin
Affiliation:
University of Illinois, Chicago
Behnam Pourdeyhimi
Affiliation:
North Carolina State University
Seeram Ramakrishna
Affiliation:
National University of Singapore
Get access

Summary

Nanotechnology has profound applications in healthcare and has improved healthcare research to a large extent. The therapeutic benefits of nanotechnology in the field of medicine have resulted in new areas, such as nanomedicine, nanobiotechnology, etc. Researchers in the field are attempting to find an effective nanoformulation to deliver growth factors, supplements or drugs safely and in a sustained manner at the required site. Their task is to attempt a different drug nanoformulation of existing blockbuster drugs that brings improved efficacy and a therapeutic breakthrough. Thus the ultimate objective of these nanotechnological drug-delivery systems is to fine tune the normal profile of potent drug molecules in the body following their administration to significantly improve their efficacy and also minimize potential intrinsic severe adverse effects. For treatment of breast cancer and non-small-cell lung cancer, Abraxane® (paclitaxel) is employed as a nanoparticular formulation, which increases drug delivery up to 70% in comparison with solvent-based paclitaxel delivery. In this novel nanoformulation, Abraxis Bio Sciences have used Bristol-Meyers Squibb’s blockbuster drug paclitaxel (Taxol) and a very common globular protein bovine serum albumin (BSA). There are numerous nanotechnology-based drug-delivery systems such as nanocrystals, nanoemulsions, lipid or polymeric nanoparticles, liposomes and nanofibers. While nanoemulsions and liposomal formulations did not make significant advances, despite huge research spending, the polymeric nanoparticulate systems show more promise. Nanoparticles of a polymeric nature find application as drug-delivery systems and are advantageous due to their scalability, cost, controlled and targeted delivery, compatibility, degradability, etc. Natural biopolymers are even better than the synthetic polymers in terms of biocompatibility and biodegradability. Nanoparticulate drug formulations alter the pharmokinetic profile of the therapeutic entity and program the release of the drug in sustained or controlled manner. Thus, nanoparticle or nanoformulated drugs outperform conventional systemic delivery in terms of delivery of an encapsulated drug and its sustained release. Slowly and surely nanoformulated drugs are coming onto the market, surpassing systemic delivery, which is believed to be the only mode of administration for a wide range of active pharmaceutical ingredients. Nanofibrous drug-delivery systems are being developed as potential scaffolds in tissue regeneration, wound healing and cancer drug-delivery applications. In this chapter we are going to discuss two promising nanotechnology-based drug-delivery tools, namely electrospun micro- and nanofibers and electrosprayed micro- and nanoparticles, which have a common synthetic procedure mediated by an electrical potential difference.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aebischer, P., Salessiotis, A. N., Winn, S. R., 1989. Basic fibroblast growth factor released from synthetic guidance channels facilitates peripheral nerve regeneration across long gaps. J. Neurosci. Res. 23, 282–289.CrossRefGoogle Scholar
Barnes, C. P., Sell, S. A., Boland, E. D., Simpson, D. G., Bowlin, G. L., 2007. Nanofiber technology: Designing the next generation of tissue engineering scaffolds, Adv. Drug. Deliv. Rev. 59, 1413–1433.CrossRefGoogle ScholarPubMed
Barnes, C. P., Smith, M. J., Bowlin, G. L., Sell, S. A., Tang, T., Matthews, J. A., Simpson, D. G., Nimtz, J. C., 2006. Feasibility of electrospinning the globular proteins hemoglobin and myoglobin. J. Eng. Fibers Fabrics 1, 16–29.Google Scholar
Bini, T. B., Gao, S., Tan, T. C., 2004. Electrospun poly(L-lactide-co-glycolide) biodegradable polymer nanofiber tubes for peripheral nerve regeneration. Nanotechnology 15, 1459–1464.CrossRefGoogle Scholar
Bolgen, N., Vargel, I., Korkusuz, P., Menceloglu, Y. Z., Piskin, E., 2007. In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. J. Biomed. Mater. Res. B, Appl. Biomater. 81, 530–543.CrossRefGoogle ScholarPubMed
Bueche, F., 1955. Tensile strength of plastics above the glass temperature. J. Appl.Phys. 26, 1133–1140.CrossRefGoogle Scholar
Bueche, F., 1960. Mechanical degradation of high polymers. J. Appl. Polym. Sci. 4, 101–106.CrossRefGoogle Scholar
Buschle-Diller, G., Cooper, J., Xie, Z., Wu, Y., Waldrup, J., Ren, X., 2007. Release of antibiotics from electrospun bicomponent fibers. Cellulose 14, 553–562.CrossRefGoogle Scholar
Carlisle, R. C., Coulais, C., Namboothiry, M., Carroll, D., Hantgan, R. R., Guthold, M., 2009. The mechanical properties of individual, electrospun fibrinogen fibers. Biomaterials 30, 1205–1213.CrossRefGoogle ScholarPubMed
Carlson, G. A., Dragoo, J. L., Samimi, B., Bruckner, D. A., Benhaim, P., 2004. Bacteriostatic properties of biomatrices against common orthopaedic pathogens. Biochem. Biophys. Res. Commun. 321, 472–478.CrossRefGoogle ScholarPubMed
Casper, C. L., Stephens, J. S., Tassi, N. G., Chase, D. B., Rabolt, J. F., 2004. Controlling surface morphology of electrospun polysterene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 37, 573–578.CrossRefGoogle Scholar
Chandrasekaran, A. R., Venugopal, J., Sundarrajan, S., Ramakrishna, S., 2011. Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration. Biomed. Mater. 6, 015001.CrossRefGoogle ScholarPubMed
Chen, F., Wang, Z. C., Lin, C. J., 2002. Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nanocomposite for use in biomedical materials. Mater. Lett. 57, 658–662.CrossRefGoogle Scholar
Chen, H., Hsieh, Y. L., 2004. Ultrafine hydrogel fibers with dual temperature- and pH-responsive swelling behaviors. J. Polym. Sci. A-Polym. Chem, 42, 6331–6339.CrossRefGoogle Scholar
Chen, P., Shengwu, Q., Ding, Y. P., Zhu, Z. C., 2011. Preparation of cisplatin composite micro/nanofibers and antitumor activity in vitro against human tumor spc-a-1 cells. NANO: Brief Rep. Rev. 6, 325–332.CrossRefGoogle Scholar
Chen, Q. Z., Boccaccini, A. R., Zhang, H. B., Wang, D. Z., Edirisinghe, M. J., 2006. Improved mechanical reliability of bone tissue engineering (zirconia) scaffolds by electrospraying. J. Am. Ceram. Soc. 89, 1534–1539.CrossRefGoogle Scholar
Chew, S. Y., Mi, R., Leong, K. W., Hoke, A., 2008. The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation, Biomaterials 29, 653–661.CrossRefGoogle ScholarPubMed
Chew, S. Y., Wen, J., Yim, E., Leong, K., 2005. Sustained release of proteins from electrospun biodegradable fibers. Biomarcromolecules 6, 2017–2024.CrossRefGoogle ScholarPubMed
Clark, A. R., 1995. Medical aerosol inhalers: past, present, and future. Aerosol Sci. Technol. 22 374–391.CrossRefGoogle Scholar
Clarke, K. I., Graves, S. E., Wong, A. T. C., Triffit, J. T., Francis, M. J. O., Czernuszka, J. T., 1993. Investigation into the formation and mechanical properties of a bioactive material based on collagen and calcium phosphate. J. Mater. Sci. Mater. Med. 4, 107–110.CrossRefGoogle Scholar
Cordeiro, P. G., 1989. Acidic fibroblast growth factor enhances peripheral nerve regeneration in vivo. Plast. Reconstr. Surg. 83, 1013–1019.CrossRefGoogle ScholarPubMed
Doi, M., Edwards, S. F., 1986. The Theory of Polymer Dynamics. Clarendon Press, Oxford.Google Scholar
Dror, Y., Salalha, W., Avrahami, R., Zussman, E., Yarin, A. L., Dersch, R., Greiner, A., Wendorff, J. H., 2007. One-step production of polymeric micro-tubes via co-electrospinning. Small 3, 1064–1073.CrossRefGoogle Scholar
Dror, Y, Ziv, T., Makarov, V., Wolf, H., Admon, A., Zussman, E., 2008. Nanofibers made of globular proteins. Biomacromolecules 9, 2749–2754.CrossRefGoogle ScholarPubMed
Engelberg, I., Kohn, J., 1991. Physico-mechanical properties of degradable polymers used in medical applications: A comparative study. Biomaterials 12, 292–304.CrossRefGoogle ScholarPubMed
Fathi-Azarbayjani, A., Qun, L., Chan, Y. W., Chan, S. Y., 2010. Novel vitamin and gold-loaded nanofiber facial mask for topical delivery. AAPS PharmSciTech. 11, 1164–1170.CrossRefGoogle ScholarPubMed
Filippov, S., Hruby, M., Konak, C., Mackova, H., Spirkova, M., Stepanek, P., 2008. Novel pH-responsive nanoparticles. Langmuir 24, 9295–9301.CrossRefGoogle ScholarPubMed
Gandhi, M., Srikar, R., Yarin, A. L., Megaridis, C. M., Gemeinhart, R. A., 2009. Mechanistic examination of protein release from polymer nanofibers. Molec. Pharm. 6, 641–647.CrossRefGoogle ScholarPubMed
Ghasemi, L. M., Prabhakaran, M. P., Morshed, M., Nasr-Esfahani, M. H., Ramakrishna, S., 2008. Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29, 4532–4539.CrossRefGoogle Scholar
Gomez, A., Bingham, D., de Juan, L., Tang, K., 1998. Production of protein nanoparticles by electrospray drying. J. Aerosol Sci. 29, 561–574.CrossRefGoogle Scholar
Guiochon, G., Felinger, A., Shirazi, D. G., Katti, A. M., 2006. Fundamentals of Preparative and Nonlinear Chromatography. Elsevier, Amsterdam.Google Scholar
Gulfam, M., Kim, J., Lee, J. M., Ku, B., Chung, B. H., Chung, B. G., 2012. Anticancer drug-loaded gliadin nanoparticles induce apoptosis in breast cancer cells. Langmuir 28, 8216−8223.CrossRefGoogle ScholarPubMed
Gupta, D., Venugopal, J., Mitra, S., Giri Dev, V. R., Ramakrishna, S., 2009a. Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts. Biomaterials 30, 2085–2094.CrossRefGoogle ScholarPubMed
Gupta, D., Venugopal, J., Prabhakaran, M. P., Giri Dev, V. R., Low, S., Choon, A. T., Ramakrishna, S., 2009b. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomater. 5, 2560–2569.CrossRefGoogle ScholarPubMed
He, W., Yong, T., Ma, Z., Teo, W. E., Ramakrishna, S., 2005. Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering. Tissue Eng. 11, 1574–1588.CrossRefGoogle ScholarPubMed
He, C. L., Huang, Z. M., Han, X. J., Liu, L., Zhang, H. S., Chen, L. S., 2006a. Coaxial electrospun poly(L-lactic acid) ultrafine fibers for sustained drug delivery. J. Macromol. Sci., Part B: Physics 45, 515–524.CrossRefGoogle Scholar
He, W., Yong, T., Teo, W. E., Ramakrishna, S., 2006b. Biodegradable polymer nanofiber mesh to maintain functions of endothelial cells. Tissue Eng. 12, 2457–2466.CrossRefGoogle ScholarPubMed
Heydarkhan-Hagvall, S., Schenke-Layland, K., Dhanasopon, A. P., Rofail, F., Smith, H., Wu, B. M., Shemin, R., Beygui, R. E., MacLellan, W. R., 2008. Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials 29, 2907–2914.CrossRefGoogle ScholarPubMed
Hu, Q., Li, B., Wang, M., Shen, J., 2004. Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture. Biomaterials 25, 779–785.CrossRefGoogle ScholarPubMed
Huang, Z. M., He, C. L., Yang, A., Han, X. J., Yin, J., Wu, Q., 2006. Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning. J. Biomed. Mater. Res. Part A 77A, 169–179.CrossRefGoogle Scholar
Ijsebaert, J. C., Geerse, K. B., Marijnissen, J. C. M., Lammers, J. W. J., Zanen, P., 2001. Electro-hydrodynamic atomization of drug solutions for inhalation purposes. J. Appl. Physiol. 91, 2735–2741.CrossRefGoogle ScholarPubMed
Ijsebaert, J. C., Geerse, K. B., Marijnissen, J. C. M., Scarlett, B., 1999. Electrohydrodynamic spraying of inhalation medicine. J. Aerosol Sci. 30 (Suppl. 1), 825–826.CrossRefGoogle Scholar
Jiang, H., Hu, Y., Li, Y., Zhao, P., Zhu, K., Chen, W., 2005. A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. J. Controlled Release 108, 237–243.CrossRefGoogle ScholarPubMed
Jin, G., Prabhakaran, M. P., Ramakrishna, S., 2011. Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering. Acta Biomater. 7, 3113–3122.CrossRefGoogle ScholarPubMed
Jin, H. J., Fridrikh, S. V., Rutledge, G. C., Kaplan, D. L., 2002. Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules 3, 1233–1239.CrossRefGoogle Scholar
Jing, Y., Zhu, Y., Yang, X., Shen, J., Li, C., 2011. Ultrasound-triggered smart drug release from multifunctional core−shell capsules one-step fabricated by coaxial electrospray method. Langmuir 27, 1175–1180.CrossRefGoogle ScholarPubMed
Kaerger, J. S., Price, R., 2004. Processing of spherical crystalline particles via a novel solution atomization and crystallization by sonication (SAXS) technique. Pharmaceut. Res. 21, 372–381.CrossRefGoogle Scholar
Katti, D. S., Robinson, K. W., Ko, F. K., Laurencin, C. T., 2004. Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters. J. Biomed. Mater. Res. B, Appl. Biomater. 70, 286–296.CrossRefGoogle ScholarPubMed
Kenawy, E., Bowlin, G., Mansfield, K., Layman, J., Simpson, G., Sanders, E., Wnek, G., 2002. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J. Controlled Release 81, 57–64.CrossRefGoogle Scholar
Kikuchi, M., Itoh, S., Ichinose, S., Shinomiya, K., Tanaka, J., 2001. Self-organization mechanism in a bone-like hydroxyapatite/collagen composite synthesized in vitro and its biological reaction in vivo. Biomaterials 22, 1705–1711.CrossRefGoogle Scholar
Kim, J., Song, H., Park, I., Carlisle, C., Bonin, K., Guthold, M., 2011. Denaturing of single electrospun fibrinogen fibers studied by deep ultra-violet fluorescence microscopy. Microsc. Res. Techn. 74, 219–224.CrossRefGoogle Scholar
Kim, K., Luu, Y. K., Chang, C., Fang, D, Hsiao, B. S., Chu, B., Hadjiargyrou, M., 2004. Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J. Controlled Release 98, 47–56.CrossRefGoogle ScholarPubMed
Kim, M. H., Kim, J. C., Lee, H. Y., Kim, J. D., Yang, J. H., 2005. Release property of temperature-sensitive alginate beads containing poly(N-isopropylacrylamide). Coll. Surfaces B 46, 57–61.CrossRefGoogle Scholar
Kim, M. Y., Lee, J., 2011. Chitosan fibrous three-dimensional networks prepared by freeze drying. Carb. Polym. 84, 1329–1336.CrossRefGoogle Scholar
Kim, S. H., Nam, Y. S., Lee, T. S., Park, W. H., 2003. Silk fibroin nanofiber. Electrospinning, properties and structure. Polymer J. 35, 185–190.CrossRefGoogle Scholar
Koh, H. S., Thomas, Y., Chan, C. K., Ramakrishna, S., 2008. Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials 29, 3574–3582.CrossRefGoogle ScholarPubMed
Kontogiannopoulos, K. N., Assimopoulou, A. N., Tsivintzelis, I., Panayiotou, C., Papageorgiou, V. P., 2011. Electrospun fiber mats containing shikonin and derivatives with potential biomedical applications. Int. J. Pharm. 409, 216–228.CrossRefGoogle ScholarPubMed
Landis, W. J., Song, M. J., Leith, A., McEwen, L., McEwen, B. F., 1993. Mineral and organic matrix in normally calcifying tendon visualized in three dimensions by high voltage electron microscopic tomography and graphic image reconstruction. J. Struct. Biol. 110, 39–54.CrossRefGoogle ScholarPubMed
Lee, S. J., Yoo, J. J., Lim, G. J., Atala, A., Stitzel, J., 2007. In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application. J. Biomed. Mater. Res. A, 83, 999–1008.CrossRefGoogle ScholarPubMed
Levich, V. G., 1962. Physicochemical Hydrodynamics. Prentice Hall, Englewood Cliffs.Google Scholar
Li, C., Vepari, C., Jin, H. J., Kim, H. J., Kaplan, D. L., 2006a. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27, 3115–3124.CrossRefGoogle ScholarPubMed
Li, T., Kildsig, D. O., Park, K., 1997. Computer simulation of molecular diffusion in amorphous polymers. J. Controlled Release 48, 57–66.CrossRefGoogle Scholar
Li, S. W., Jayasinghe, S. N., Edirisinghe, M. J., 2006b. Aspirin particle formation by electric-field-assisted release of droplets. Chem. Eng. Sci. 61 3091–3097.CrossRefGoogle Scholar
Li, W.-J., Tuli, R., Huang, X., Laquerriere, P., Tuan, R. S., 2005a. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 26, 5158–5166.CrossRefGoogle Scholar
Li, W.-J., Tuli, R., Okafor, C., Derfoul, A., Danielson, K. G., Hall, D. J., Tuan, R. S., 2005b. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26, 599–609.CrossRefGoogle ScholarPubMed
Li, Z., Guo, X., Guan, J., 2012. An oxygen release system to augment cardiac progenitor cell survival and differentiation under hypoxic condition. Biomaterials 33, 5914–5923.CrossRefGoogle ScholarPubMed
Liao, I. C., Chew, S. Y., Leong, K. W., 2006. Alighned core–shell nanofibers delivering bioactive proteins. Nanomedicine 1, 465–471.CrossRefGoogle ScholarPubMed
Liao, S. S., Cui, F. Z., Feng, Q. L., 2004. Hierarchically biomimetic bone scaffold materials: Nano-HA/Collagen/PLA composite. J. Biomed. Mater. Res. B 69, 158–165.CrossRefGoogle Scholar
Liu, X., Smith, L. A, Hu, J., Ma, P. X., 2009. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials 30, 2252–2258.CrossRefGoogle ScholarPubMed
Luong-Van, E., Grondahl, L., Ngiap Chua, K., Leong, K., Nurcombe, V., Cool, S., 2006. Controlled release of heparin from poly(epsilon-caprolactone) electrospun fibers. Biomaterials 27, 2042–2050.CrossRefGoogle ScholarPubMed
Ma, G., Liu, Y., Peng, C., Fang, D., He, B., Nie, J., 2011. Paclitaxel loaded electrospun porous nanofibers as mat potential application for chemotherapy against prostate cancer. Carb. Polym. 86, 505–512.CrossRefGoogle Scholar
Madhaiyan, K., Sridhar, R., Sundarrajan, S., Venugopal, J. R., Ramakrishna, S., 2013. Vitamin B12 loaded polycaprolactone nanofibers: a novel transdermal route for the water soluble energy supplement delivery. Int. J. Pharm. 444, 70–76.CrossRefGoogle ScholarPubMed
Mannello, F., Tonti, G. A., 2007. Concise review: No breakthroughs for human mesenchymal and embryonic stem cell culture: Conditioned medium, Feeder layer, or Feeder-free; Medium with fetal calf serum, human serum, or Enriched plasma; Serum-free, Serum replacement nonconditioned medium, or Ad Hoc formula? All that glitters is not gold!Stem Cells 25, 1603–1609.CrossRefGoogle Scholar
Matthews, J. A., Wnek, G. E., Simpson, D. G., Bowlin, G. L., 2002. Electrospinning of collagen nanofibers. Biomacromolecules 3, 232–238.CrossRefGoogle ScholarPubMed
McManus, M., Boland, E. D., Koo, H. P., Barnes, C. P., Pawlowski, K. J., Wnek, G. E., Simpson, D. G., Bowlin, G. L., 2006. Mechanical properties of electrospun fibrinogen structures. Acta Biomater. 2, 19–28.CrossRefGoogle ScholarPubMed
McManus, M., Boland, E., Sell, S., Bowen, W., Koo, H., Simpson, D., Bowlin, G. L., 2007a. Electrospun nanofibre fibrinogen for urinary tract tissue reconstruction. Biomed. Mater. 2, 257–262.CrossRefGoogle ScholarPubMed
McManus, M. C., Boland, E. D., Simpson, D. G., Barnes, C. P., Bowlin, G. L., 2007b. Electrospun fibrinogen: feasibility as a tissue engineering scaffold in a rat cell culture model. J. Biomed. Mater. Res. A 81, 299–309.CrossRefGoogle Scholar
Miller, C., Shanks, H., Witt, A., Rutkowski, G., Mallapragada, S., 2001. Oriented Schwann cell growth on micropatterened biodegradable polymer substrates. Biomaterials, 22, 1263–1269.CrossRefGoogle Scholar
Miyajima, M., Koshika, A., Okada, J., Ikeda, M., 1999. Mechanism of drug release from poly(L-lactic acid) matrix containing acidic or neutral drugs. J. Controlled Release 60, 199–209.CrossRefGoogle ScholarPubMed
Miyajima, M., Koshika, A., Okada, J., Ikeda, M., Nishimura, K., 1997. Effect of polymer crystallinity on papaverine release from poly(L-lactic acid) matrix. J. Controlled Release 49, 207–215.CrossRefGoogle Scholar
Miyajima, M., Koshika, A., Okada, J., Kusai, A., Ikeda, M., 1998. Factors influencing the diffusion-controlled release of papaverine from poly(L-lactic acid) matrixJ. Controlled Release 56, 85–94.CrossRefGoogle ScholarPubMed
Mo, X. M., Xu, C. Y., Kotaki, M., Ramakrishna, S., 2004. Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 25, 1883–1890.CrossRefGoogle ScholarPubMed
Moroni, L., Licht, R., de Boer, J., de Wijn, J. R., van Blitterswijk, C. A., 2006. Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology and the release of incorporated compounds. Biomaterials 27, 4911–4922.CrossRefGoogle ScholarPubMed
Muzzarelli, C., Muzzarelli, R. A. A., 2002. Natural and artificial chitosan-inorganic composites. J. Inorg. Biochem. 92, 89–94.CrossRefGoogle ScholarPubMed
Noh, H. K., Lee, S. W., Kim, J. M., Oh, J. E., Kim, K. H., Chung, C. P., Choi, S. C., Park, W. H., Min, B. M., 2006. Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials 27, 3934–3944.CrossRefGoogle ScholarPubMed
O’Brien, F. J., Harley, B. A., Yannas, I. V., Gibson, L., 2004. Influence of freezing rate on pore structure in freeze dried collagen GAG scaffolds. Biomaterials 25, 1077–1086.CrossRefGoogle ScholarPubMed
Ohgo, K., Zhao, C., Kobayashi, M., Asakura, T., 2003. Preparation of non-woven nanofibers of Bombyx mori silk, Samia cynthia ricini silk and recombinant hybrid silk with electrospinning method. Polymer 44, 841–846.CrossRefGoogle Scholar
Porter, A., Patel, N., Brooks, R., Bonfield, W., 2005. Effect of carbonate substitution on the ultrastructural characteristics of hydroxyapatite implants. J. Mater. Sci. Mater. Med. 16, 899–907.CrossRefGoogle ScholarPubMed
Powell, M. P., Sobarzo, M. R., Saltzman, W. M., 1990. Controlled release of nerve growth factor from a polymeric implant. Brain Res. 515, 309–311.CrossRefGoogle ScholarPubMed
Prabhakaran, M. P., Venugopal, J., Casey, C., Ramakrishna, S., 2008a. Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering. Nanotechnology 19, 455102.CrossRefGoogle ScholarPubMed
Prabhakaran, M. P., Venugopal, J., Chyan, T. T., Hai, L. B., Chan, C. K., Tang, A. L., Ramakrishna, S., 2008b. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng. A 14, 1787–1797.CrossRefGoogle ScholarPubMed
Prabhakaran, M. P., Venugopal, J., Ramakrishna, S., 2009. Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater. 5, 2884–2893.CrossRefGoogle ScholarPubMed
Qiu, Y., Park, K., 2001. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 53, 321–339.CrossRefGoogle ScholarPubMed
Reneker, D. H., Yarin, A. L., Zussman, E., Xu, H., 2007. Electrospinning of nanofibers from polymer solutions and melts. Adv. Appl. Mech. 41, 43–195.CrossRefGoogle Scholar
Ritger, P. L., Peppas, N. A., 1987. A simple equation for description of solute-release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Controlled Release 5, 23–36.CrossRefGoogle Scholar
Rusu, V. M., Ng, C. H., Wilke, M., Tiersch, B., Fratzl, P., Peter, M. G., 2005. Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials. Biomaterials 26, 5414–5426.CrossRefGoogle ScholarPubMed
Sachlos, E., Gotora, D., Czernuszka, J. T., 2006. Collagen scaffolds reinforced with biomimetic composite nano-sized carbonate-substituted hydroxyapatite crystals and shaped by rapid prototyping to contain internal microchannels. Tissue Eng. 12, 2479–2487.CrossRefGoogle ScholarPubMed
Saltzman, W. M., Langer, R., 1989. Transport rates of proteins in porous materials with known microgeometry. Biophys. J. 55, 163–171.CrossRefGoogle ScholarPubMed
Schnell, E., Kinkhammer, K., Balzer, S., Brook, G., Mey, J., 2007. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ε-caprolactone and a collagen/poly-ε-caprolactone blend. Biomaterials 28, 3012–3025.CrossRefGoogle Scholar
Shields, K. J., Beckman, M. J., Bowlin, G. L., Wayne, J. S., 2004. Mechanical properties and cellular proliferation of electrospun collagen type II. Tissue Eng. 10, 1510–1517.CrossRefGoogle ScholarPubMed
Shin, M., Yoshimoto, H., Vacanti, J. P., 2004. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng. 10, 33–41.CrossRefGoogle ScholarPubMed
Siebers, M. C., Walboomers, X. F., Leeuwenburgh, S. C. G., Wolke, J. G. C., Jansen, J. A., 2004. Electrostatic spray deposition (ESD) of calcium phosphate coatings, an in vitro study with osteoblast-like cells. Biomaterials 25, 2019–2027.CrossRefGoogle Scholar
Sinha-Ray, S., Zhang, Y., Placke, D., Megaridis, C. M., Yarin, A. L., 2010. Resins with nano-“raisins”. Langmuir 26 10243–10249.CrossRefGoogle ScholarPubMed
Song, M., Wang, X., Wang, C., Pan, C., Fu, D., Gu, Z., 2009. Application of the blending of PNIPAM-co-PS nanofibers with functionalized Au nanoparticles for the high-sensitive diagnosis of cancer cells. J. Nanosci. Nanotechnol. 9, 876–879.CrossRefGoogle ScholarPubMed
Song, F., Wang, X. L., Wang, Y. Z., 2011. Poly (N-isopropylacrylamide)/poly (ethylene oxide) blend nanofibrous scaffolds: Thermo-responsive carrier for controlled drug release. Coll. Surf. B: Biointerfaces 88, 749–754.CrossRefGoogle ScholarPubMed
Songsurang, K., Praphairaksit, N., Siraleartmukul, K., Muangsin, N., 2011. Electrospray fabrication of Doxorubicin-Chitosan-Tripolyphosphate nanoparticles for delivery of Doxorubicin. Arch. Pharm. Res. 34, 583–592.CrossRefGoogle ScholarPubMed
Srikar, R., Yarin, A. L., Megaridis, C. M., Bazilevsky, A. V., Kelley, E., 2008. Desorption-limited mechanism of release from polymer nanofibers. Langmuir 24, 965–974.CrossRefGoogle ScholarPubMed
Taepaiboon, P., Rungsardthong, U., Supaphol, P., 2007. Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E. Eur. J. Pharm. Biopharm. 67, 387–397.CrossRefGoogle ScholarPubMed
Tang, K., Gomez, A., 1994. Generation by electrospray of monodisperse water droplets for targeted drug delivery by inhalation. J. Aerosol Sci. 25, 1237–1249.CrossRefGoogle Scholar
Termonia, Y., Meakin, P., Smith, P., 1985. Theoretical study of the influence of the molecular weight on the maximum tensile strength of polymer fibers. Macromolecules 18, 2246–2252.CrossRefGoogle Scholar
Theron, A., Zussman, E., Yarin, A. L., 2001. Electrostatic field-assisted alignment of electrospun nanofibers. Nanotechnology 12, 384–390.CrossRefGoogle Scholar
Thomas, V., Jose, M. V., Chowdhury, S., Sullivan, J. F., Dean, D. R., Vohra, Y. K., 2006. Mechano-morphological studies of aligned nanofibrous scaffolds of polycaprolactone fabricated by electrospinning. J Biomater. Sci. Polym. Ed. 17, 969–984.CrossRefGoogle ScholarPubMed
Tikhonov, A. N., Samarskii, A. A., 1990. Equations of Mathematical Physics. Dover, New York.Google Scholar
Uslu, I., Keskin, S., Gul, A., Karabulut, T. C., Aksu, M. L., 2010. Preparation and properties of electrospun poly(vinyl alcohol) blended hybrid polymer with aloe vera and HPMC as wound dressing. Hacettepe J. Biol. and Chem. 38, 19–25.Google Scholar
Venugopal, J., Low, S., Choon, A. T., Bharath Kumar, A., Ramakrishna, S., 2008a. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Artif. Organs 32, 388–397.CrossRefGoogle ScholarPubMed
Venugopal, J., Low, S., Choon, A. T., Kumar, A. B., Ramakrishna, S., 2008b. Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells. J. Biomed. Mater. Res. 85A, 408–417.CrossRefGoogle Scholar
Venugopal, J., Low, S., Choon, A. T., Sampath Kumar, T. S., Ramakrishna, S., 2008c. Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers. J. Mater. Sci. Mater. Med. 19, 2039–2046.CrossRefGoogle ScholarPubMed
Venugopal, J., Vadagama, P., Sampath Kumar, T. S., Ramakrishna, S., 2007. Biocomposite nanofibers and osteoblasts for bone tissue engineering. Nanotechnology 18, 055101.CrossRefGoogle Scholar
Verreck, G., Chun, I., Rosenblatt, J., Peeters, J., Dijck, A., Mensch, J., Noppe, M., Brewster, M., 2003a. Incorporation of drugs in an amorphous state into electrospun nanofiber composed of water-insoluble, nonbiodegradable polymer. J. Controlled Release 92, 349–360.CrossRefGoogle Scholar
Verreck, G., Sun, I., Peeters, J., Rosenblatt, J., Brewster, M., 2003b. Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharm. Res. 20, 810–817.CrossRefGoogle ScholarPubMed
Wada, R., Hyon, S. H., Ikada, Y., 1995. Kinetics of diffusion-mediated drug release enhanced by matrix degradation. J. Controlled Release 37, 151–160.CrossRefGoogle Scholar
Wahl, D., Czernuszka, J. T., 2006. Collagen-hydroxyapatite composites for hard tissue repair. Euro. Cells Mater. 11, 43–56.CrossRefGoogle ScholarPubMed
Wahl, D. A., Sachlos, E., Liu, C., Czernuszka, J. T., 2007. Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering. J. Mater. Sci. Mater. Med. 18, 201–209.CrossRefGoogle ScholarPubMed
Washburn, E. W., 1921. The dynamics of capillary flow. Phys. Rev. 17, 273–283.CrossRefGoogle Scholar
Wei, J., Li, Y. B., Chen, W. Q., Zuo, Y., 2003. A study on nanocomposite of hydroxyapatite and polyamide. J. Mater Sci. 38, 3303–3306.CrossRefGoogle Scholar
Weiner, S., Traub, W., 1989. Crystal size and organization in bone. Connect. Tissue Res. 21, 589–595.CrossRefGoogle ScholarPubMed
Whitworth, I. H., Brown, R. A., Dore, C., Green, C. J., Terenghi, G., 1995. Orientated mats of fibronectin as a conduit material for use in peripheral nerve repair. J. Hand Surg. J. British Soc. Surg. Hand 20, 429–436.CrossRefGoogle ScholarPubMed
Wise, J. K., Cho, M., Zussman, E., Megaridis, C. M., Yarin, A. L., 2008. Electrospinning techniques to control deposition and structural alignment of nanofibrous scaffolds for cellular orientation and cytosceletal reorganization in Nanotechnology and Tissue Engineering, pp. 243–260. (Eds. Laurencin, C. T. and Nair, L. S.), CRC Press, Taylor & Francis, Boca Raton, New York.Google Scholar
Wise, J. K., Yarin, A. L., Megaridis, C. M., Cho, M., 2009. Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: Engineering the superficial zone of atricular cartilage. Tissue Eng. 15, 913–921.CrossRefGoogle Scholar
Wnek, G. E., Carr, M. E., Simpson, D. G., Bowlin, G. L., 2003. Electrospinning of nanofiber fibrinogen structures. Nano Lett. 3, 213–216.CrossRefGoogle Scholar
Xie, J., Wang, C. H., 2006. Electrospun micro- and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro. Pharm. Res. 23, 1817–1826.CrossRefGoogle ScholarPubMed
Xu, C. Y., Inai, R., Kotaki, M., Ramakrishna, S., 2004a. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 25, 877–886.CrossRefGoogle ScholarPubMed
Xu, C. Y., Inai, R., Kotaki, M., Ramakrishna, S., 2004b. Electrospun nanofibers fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng. 10, 1160–1168.CrossRefGoogle ScholarPubMed
Xu, X., Chen, X., Wang, Z., Jing, X., 2009. Ultrafine PEG–PLA fibers loaded with both paclitaxel and doxorubicin hydrochloride and their in vitro cytotoxicity. Eur. J. Pharm. Biopharm. 72, 18–25.CrossRefGoogle ScholarPubMed
Yamaguchi, I., Tokuchi, K., Fukuzaki, H., Koyama, Y., Takakuda, K., Monma, H., 2001. Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J. Biomed. Mater. Res. 55, 20–27.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Yang, D. Z., Jin, Y., Ma, G. P., Chen, X. M., Lu, F. M., Nie, J., 2008. Fabrication and characterization of chitosan/PVA with hydroxyapatite biocomposite nanoscaffolds. J. Appl. Polym. Sci. 110, 3328–3335.CrossRefGoogle Scholar
Yang, F., Murugan, R., Wang, S., Ramakrishna, S., 2005. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26, 2603–2610.CrossRefGoogle ScholarPubMed
Yarin, A. L., 1991. Strong flows of polymeric liquids: 2. Mechanical degradation of macromolecules. J. Non-Newton. Fluid Mech. 38, 127–136.CrossRefGoogle Scholar
Yarin, A. L., 1993. Free Liquid Jets and Films: Hydrodynamics and Rheology. Longman Scientific & Technical and John Wiley & Sons, Harlow, New York.Google Scholar
Yarin, A. L., 2008. Stimuli-responsive polymers in nanotechnology: Deposition and possible effect on drug release. Math. Model. Nat. Phenom. 3, No. 5, 1–15.CrossRefGoogle Scholar
Yarin, A. L., Lastochkin, D., Talmon, Y., Tadmor, Z., 1999. Bubble nucleation during devolatilization of polymer melts, AIChE Journal 45, 2590–2605.CrossRefGoogle Scholar
Yoshimoto, H., Shin, Y. M., Terai, H., Vacanti, J. P., 2003. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24, 2077–2082.CrossRefGoogle ScholarPubMed
Zarkoob, S., Eby, R. K, Reneker, D. H., Hudson, S. D., Ertley, D., Adams, W. W., 2004. Structure and morphology of electrospun silk nanofibers. Polymer 45, 3973–3977.CrossRefGoogle Scholar
Zhang, S., Huang, Y., Yang, X., Mei, F., Ma, Q., Chen, G., Ryu, S., Deng, X., 2009. Gelatin nanofibrous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration. J. Biomed. Mater. Res. A 90, 671–679.CrossRefGoogle ScholarPubMed
Zhang, S., Kawakami, K., 2010. One-step preparation of chitosan solid nanoparticles by electrospray deposition. Int. J. Pharm. 397, 211–217.CrossRefGoogle ScholarPubMed
Zhang, Y., Sinha-Ray, S., Yarin, A. L., 2011. Mechanoresponsive polymer nanoparticles, nanofibers and coatings as drug carriers and components of microfluidic devices. J. Mater. Chem. 21, 8269–8281.CrossRefGoogle Scholar
Zhang, Y., Yarin, A. L., 2009. Stimuli-responsive copolymers of N-isopropyl acrylamide with enhanced longevity in water for micro- and nanofluidics, drug delivery and non-woven applications. J. Mater. Chem. 19, 4732–4739.CrossRefGoogle Scholar
Zhang, Y. Z., Ouyang, H. W., Lim, C. T., Ramakrishna, S., Huang, Z. M., 2005. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J. Biomed. Mater. Res. B Appl. Biomater. 72, 156–165.CrossRefGoogle ScholarPubMed
Zhang, Y. Z., Su, B., Ramakrishna, S., Lim, C. T., 2008a. Chitosan nanofibers from an easily electrospinnable UHMWPEO-doped chitosan solution system. Biomacromolecules 9, 136–141.CrossRefGoogle ScholarPubMed
Zhang, Y. Z., Venugopal, J. R., El-Turki, A., Ramakrishna, S., Su, B., Lim, C. T., 2008b. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/ chitosan for bone tissue engineering. Biomaterials 29, 4314–4322.CrossRefGoogle ScholarPubMed
Zhang, Y. Z., Wang, X., Feng, Y., Li, J., Lim, C. T., Ramakrishna, S., 2006. Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(epsilon-caprolactone) nanofibers for sustained release. Biomacromolecules 7, 1049–1057.CrossRefGoogle ScholarPubMed
Zhurkov, S. N., Korsukov, V. E., 1974. Atomic mechanism of fracture of solid polymers. J. Polym.Sci., Polym. Phys. Ed. 12, 385–398.CrossRefGoogle Scholar
Zeng, J., Xu, X., Chen, X., Leng, Q., Bian, X., Yang, L., Jing, X., 2003. Biodegradable electrospun fibers for drug delivery. J. Controlled Release 92, 227–231.CrossRefGoogle ScholarPubMed
Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B. S., Chu, B., 2002. Structure and process relationship of electrospun bioadsorbable nanofiber membranes. Polymer 43, 4403–4412.CrossRefGoogle Scholar
Zussman, E., Burman, M., Yarin, A. L., Khalfin, R., Cohen, Y., 2006a. Tensile deformation of electrospun Nylon 6,6 nanofibers. J. Polym. Sci., Part B- Polymer Physics 44, 1482–1489.CrossRefGoogle Scholar
Zussman, E., Yarin, A. L., Bazilevsky, A. V., Avrahami, R., Feldman, M., 2006b. Electrospun Polyacrylonitrile/Poly(methyl methacrylate)-derived carbon micro-/nanotubes. Adv. Mater. 18, 348–353.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×