Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-15T06:54:32.637Z Has data issue: false hasContentIssue false

2 - Polymer physics and rheology

Published online by Cambridge University Press:  05 June 2014

Alexander L. Yarin
Affiliation:
University of Illinois, Chicago
Behnam Pourdeyhimi
Affiliation:
North Carolina State University
Seeram Ramakrishna
Affiliation:
National University of Singapore
Get access

Summary

Several physical concepts that are of the utmost importance in fiber-forming processes are described in this chapter. The basic physical model of a flexible polymer macromolecule as a random walk is outlined in Section 2.1. The elongational and shear rheometry of polymer solutions and melts, which elucidate the stress relation with strains and strain rate, as well as stress relaxation is described in Section 2.2. The phenomenological rheological constitutive equations appropriate for the description of viscoelastic polymer solutions and melts are introduced in Section 2.3. The micromechanical foundations of the entropic elasticity responsible for viscoelasticity of polymer solutions and melts are sketched out in Section 2.4. Solidification and crystallization are discussed in Sections 2.5 and 2.6, respectively.

Polymer structure, macromolecular chains, Kuhn segment, persistence length

A linear polymer macromolecule can be represented as a succession of identical rigid segments connected at arbitrary angles, i.e. freely jointed with each other (Flory 1969, de Gennes 1979, Doi and Edwards (1986). Such a macromolecule is comprised of N segments, each of length b. The total length of a fully stretched macromolecule is then L = Nb. The rigid segments are called Kuhn segments. A real macromolecular chain consisting of n monomers is idealized as a random walk of N Kuhn segments, which are not monomers, nor is N identical to the degree of polymerization n. If the number of Kuhn segments in a macromolecule is not large, i.e. N is close to 1, it is rather inflexible, almost rod-like. On the other hand, if N >> 1, the macromolecule is very flexible, and on length scales that are significant compared to b, but much smaller than L, it can be viewed as a flexible string. Persistence length is another length scale that characterizes the resistance of segments of macromolecular chains to bending. It is of the same order of magnitude as the length of the Kuhn segments.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Astarita, G., Marrucci, G., 1974. Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill, New York.Google Scholar
Avrami, M., 1939. Kinetics of phase change. I. General theory. J Chem. Phys. 7, 1103–1112.CrossRefGoogle Scholar
Beyreuther, R., Brünig, H., 1997. High filament velocities in the underpressure spunbonding nonwoven process. Int. Fiber J. December, 129–134.Google Scholar
Bird, R. B., Curtiss, C. F., Armstrong, R. C., Hassager, O., 1987. Dynamics of Polymeric Liquids, John Wiley & Sons, New York.Google Scholar
Brünig, H., Beyreuther, R., Hoffman, H., 1999. The influence of quench air on fiber formation and properties in the melt spinning process. Int. Fiber J. April, 104–107.Google Scholar
Buchko, C. J., Chen, L. C., Shen, Y., Martin, D. C., 1999. Processing and microstructural characterization of porous biocompatible protein polymer thin filmsPolymer 40, 7397–7407.CrossRefGoogle Scholar
Chang, H., Lodge, A. S., 1972. Comparison of rubberlike-liquid theory with stress-growth data for elongation of a low-density branched polyethylene melt. Rheol. Acta 11, 127–129.CrossRefGoogle Scholar
Chen, C. H., White, J. L., Spruiell, J. E., Goswami, B. C., 1983. Dynamics, air drag and orientation development in the spunbonding process for nonwoven fabric. Tex. Res. J. January, 44–51.CrossRefGoogle Scholar
Cheng, S. Z. D., Bu, H. S., Wunderlich, B., 1988. Double lamellae of low-molecular-mass fractions of poly(ethylene oxide) crystallized from the melt. Polymer 29, 579–583.CrossRefGoogle Scholar
Choi, Y. B., Kim, S. Y., 1999. Effects of interface on the dynamic mechanical properties of PET/Nylon 6 bicomponent fibers. J. Appl. Polym. Sci. 74, 2083–2093.3.0.CO;2-G>CrossRefGoogle Scholar
Ciferri, A., Ward, I. M., 1979. Ultra-high Modulus Polymers. Appl. Sci. Publ., London.Google Scholar
de Gennes, P. G., 1979. Scaling Concepts in Polymer Physics. Ithaca, Cornell Univ. Press.Google Scholar
Dersch, R., Liu, T., Schaper, A. K., Greiner, A., Wendorff, J. H., 2003. Electrospun nanofibers: internal structure and intrinsic orientation. J. Polym. Sci.: Part A: Polym. Chem. 41, 545–553.CrossRefGoogle Scholar
Doi, M., Edwards, S. F., 1986. The Theory of Polymer Dynamics. Clarendon Press, Oxford.Google Scholar
Fedorova, N., 2006. Investigation of the utility of islands in the sea bicomponent fiber technology in the spunbond process. PhD Thesis, NC State University.
Flory, P., 1969. Statistics of Chain Molecules. Interscience Publishers, New York.Google Scholar
Fong, H., Reneker, D. H., 1999. Elastomeric nanofibers of styrene-butadiene-styrene triblock copolymer. J. Polym. Sci., Polym. Phys. Ed. 37, 3488–3493.3.0.CO;2-M>CrossRefGoogle Scholar
Hajji, B., Spruiell, J. E., Lu, F. M., Malkan, S., Richardson, G. C., 1992. Modeling of the “Reicofil” spunbonding process. INDA Journal of Nonwovens Research 4, 16–21.Google Scholar
Han, T., Yarin, A. L., Reneker, D. H., 2008. Viscoelastic electrospun jets: initial stresses and elongational rheometry. Polymer 49, 1651–1658.CrossRefGoogle Scholar
Holmes, D. R., Bunn, C. W., Smith, D. J., 1955. The crystal structure of polycaproamide: Nylon 6. J. Polym. Sci. 17, 159–177.CrossRefGoogle Scholar
Jaeger, R., Schonherr, H., Vancso, G. J., 1996. Chain packing in electro-spun poly(ethylene oxide) visualized by atomic force microscopy. Macromolecules 29, 7634–7636.CrossRefGoogle Scholar
Jena, A. K., Chaturvedi, M. C., 1992. Phase Transformations in Materials. Prentice Hall, Englewood Cliffs.Google Scholar
Joseph, D. D., 1990. Fluid Dynamics of Viscoelastic Liquids. Springer, New York.CrossRefGoogle Scholar
Kikutani, T., Radhakrishnan, J., Arikawa, S., Takaku, A., Okui, N., Jin, X., Niwa, F., Kudo, Y., 1996. High-speed melt spinning of bicomponent fibers; mechanism of fiber structure development in poly(ethylene terephthalate)/polypropylene system. J. Appl. Polym. Sci. 62, 1913–1924.3.0.CO;2-Z>CrossRefGoogle Scholar
Lamb, H., 1959. Hydrodynamics. Cambridge University Press, Cambridge.Google Scholar
Landau, L. D., Lifshitz, E. M., 1970. Theory of Elasticity. Pergamon Press, Oxford.Google Scholar
Landau, L. D., Lifshitz, E. M., 1987. Fluid Mechanics. Pergamon Press, New York.Google Scholar
Larson, R., 1988. Constitutive Equations for Polymer Melts and Solutions. Buttersworths, New York.Google Scholar
Li, Y., Goddard, W. A., 2002. Nylon 6 crystal structures, folds, and lamellae from theory. Macromolecules 35, 8440–8455.CrossRefGoogle Scholar
Liu, W., Wu, Z., Reneker, D. H., 2000. Structure and morphology of poly(metaphenylene isophthalamide) nanofibers produced by electrospinning. Polymer Reprints 41 1193–1194.Google Scholar
Lodge, A., 1964. Elastic Liquids. Academic Press, London.Google Scholar
Loitsyanskii, L. G., 1966. Mechanics of Liquids and Gases. Pergamon Press, Oxford (the English translation of the 2nd Russian edition), and the 3rd Russian edition published by Nauka, Moscow, 1970.Google Scholar
Macosco, C. W., 1994. Rheology – Principles, Measurements and Applications. John Wiley & Sons, New York.Google Scholar
Maddams, W. F., Royaud, I. A. M., 1991. The application of Fourier transform Raman spectroscopy to the identification and characterisation of polyamides–II. Double- number. Spectrochim. Acta: Mol. Spectr. 47A, 1327–1333.CrossRefGoogle Scholar
McKinley, G. H., Tripathi, A., 2000. How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer. J. Rheol. 44, 653–669. CrossRefGoogle Scholar
Mistra, S., Spruiell, J. E., Richeson, G. C., 1993. Investigation of the spunbonding process via mathematical modeling. INDA J. Nonwovens Res. 5, 13–19.Google Scholar
Nayfeh, A. H., 1981. Introduction to Perturbation Techniques. John Wiley & Sons, New York.Google Scholar
Penel-Pieron, L., Depecker, C., Seguela, R., Lefebvre, J. M., 2001. Structural and mechanical behavior of Nylon 6 films. Part 1. Identification and stability of the crystalline phases. J. Polym. Sci.: Part B: Polym. Phys. 39, 484–495.3.0.CO;2-R>CrossRefGoogle Scholar
Reiner, M., 1969. Deformation, Strain and Flow: An Elementary Introduction to Rheology. HK Lewis, London.Google Scholar
Reneker, D. H., Yarin, A. L., 2008. Electrospinning jets and polymer nanofibers. Polymer 49, 2387–2425.CrossRefGoogle Scholar
Reneker, D. H., Yarin, A. L., Fong, H., Koombhongse, S., 2000. Bending instability of electrically charged liquid jets of polymer solutions in electospinning. J. Appl. Phys. 87, 4531–4547.CrossRefGoogle Scholar
Reneker, D. H., Yarin, A. L., Zussman, E., Xu, H., 2007. Electrospinning of nanofibers from polymer solutions and melts. Adv. Appl. Mech. 41, 43–195.CrossRefGoogle Scholar
Reynolds, J., Sternstein, S. S., 1964. Effect of pressure on the infrared spectra of some hydrogen‐bonded solids. J. Chem. Phys. 41, 47–51.CrossRefGoogle Scholar
Russell, D. P., Beaumont, P. W. R., 1980. Structure and properties of injection-molded nylon-6: Part 1. Structure and morphology of nylon 6. J. Mater. Sci. 15, 197–207.CrossRefGoogle Scholar
Sikorski, P., Atkins, E. D. T., 2001. The three-dimensional structure of monodisperse 5-amide nylon 6 crystals in the lambda-phase. Macromolecules 34, 4788–4794.CrossRefGoogle Scholar
Sinha-Ray, S., Lee, M. W., Sinha-Ray, S., An, S., Pourdeyhimi, B., Yoon, S. S., Yarin, A. L., 2013a. Supersonic nanoblowing: A new ulta-stiff phase of nylon 6 in 20–50 nm confinement. J. Mater. Chem. C 1, 3491–3498.CrossRefGoogle Scholar
Sinha-Ray, S., Srikar, R., Lee, C. C., Li, A., Yarin, A. L., 2011. Shear and elongational rheology of gypsum slurries. Applied Rheology 21, 63071.Google Scholar
Sinha-Ray, S., Yarin, A. L., Pourdeyhimi, B., 2013b. Prediction of angular and mass distribution in meltblown polymer laydown. Polymer 54, 860–872.CrossRefGoogle Scholar
Smook, J., Pennings, A. J., 1983. Preparation of ultra-high strength polyethylene fibers by gel-spinning/hot-drawing at high spinning rates. Polym. Bull. 9, 75–80.CrossRefGoogle Scholar
Srikar, R., Gambaryan-Roisman, T., Steffes, C., Stephan, P., Tropea, C., Yarin, A. L., 2009. Nanofiber coating of surfaces for intensification of spray or drop impact cooling. Int. J. Heat and Mass Transf. 52, 5814–5826.CrossRefGoogle Scholar
Stelter, M., Wunderlich, J., Rath, S. K., Brenn, G., Yarin, A. L., Singh, R. P., Durst, F., 1999. Shear and extensional investigations in solutions of grafted/ungrafted amylopectin and polyacrylamide. J. Appl. Polym. Sci. 74, 2773–2782.3.0.CO;2-9>CrossRefGoogle Scholar
Stelter, M., Brenn, G., Yarin, A. L., Singh, R. P., Durst, F., 2000. Validation and application of a novel elongational device for polymer solutions. J. Rheol. 44, 595–616.CrossRefGoogle Scholar
Stelter, M, Brenn, G., Yarin, A. L., Singh, R. P., Durst, F., 2002. Investigation of the elongational behavior of polymer solutions by means of an elongational rheometer. J. Rheol. 46, 507–527.CrossRefGoogle Scholar
Takahashi, Y., Tadokoro, H., 1973. Structural studies of polyethers (-(CH2)M-O-)N.10. crystal-structure of poly(ethylene oxide)Macromolecules 6, 672–675.CrossRefGoogle Scholar
Theron, S. A., Zussman, E., Yarin, A. L., 2004. Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45, 2017–2030.CrossRefGoogle Scholar
Tiwari, M. K., Bazilevsky, A. V., Yarin, A. L., Megaridis, C. M., 2009 Elongational and shear rheology of carbon nanotube suspensions-fluids with yield stress. Rheologica Acta 48, 597–609.CrossRefGoogle Scholar
Wunderlich, T., Stelter, M., Tripathy, T., Nayak, B. R., Brenn, G., Yarin, A. L., Singh, R. P., Brunn, P. O., Durst, F., 2000. Shear and extensional rheological investigations in solutions of grafted and ungrafted polysaccharides. J. Appl. Polym. Sci. 77, 3200 – 3209.3.0.CO;2-9>CrossRefGoogle Scholar
Xu, H., Yarin, A. L., Reneker, D. H., 2003. Characterization of fluid flow in jets during electrospinning. Polymer Preprints 44, 51–52.Google Scholar
Yarin, A. L., 1990. Strong flows of polymeric liquids: 1. Rheological behavior. J. Non-Newton. Fluid Mech. 37, 113 – 138.CrossRefGoogle Scholar
Yarin, A. L., 1992. Flow-induced on-line crystallization of rodlike molecules in fibre spinning. J. Applied Polymer Sci. 46, 873–878.CrossRefGoogle Scholar
Yarin, A. L., 1993. Free Liquid Jets and Films: Hydrodynamics and Rheology. Longman Scientific & Technical and John Wiley & Sons, Harlow, New York.Google Scholar
Yarin, A. L., Koombhongse, S., Reneker, D. H., 2001. Bending instability in electrospinning of nanofibers. J. Appl. Phys. 89, 3018–3026.CrossRefGoogle Scholar
Yarin, A. L., Sinha-Ray, S., Pourdeyhimi, B., 2010. Meltblowing: II-Linear and nonlinear waves on viscoelastic polymer jets. J. Appl. Phys. 108, 034913.CrossRefGoogle Scholar
Yarin, A. L., Sinha-Ray, S., Pourdeyhimi, B., 2011. Meltblowing: Multiple jets and fiber-size distribution and lay-down patterns. Polymer 52, 2929–2938.CrossRefGoogle Scholar
Yarin, A. L., Zussman, E., Theron, A., Rahimi, S., Sobe, Z., Hassan, D., 2004. Elongational behavior of gelled propellant simulants. J. Rheol. 48, 101–116.CrossRefGoogle Scholar
Yoshimura, M., Iohara, K., Nagai, H., Takahashi, T., Koyama, K., 2003. Structure formation of blend and sheath/core conjugated fibers in high-speed spinning of PET, including a small amount of PMMA. J. Macr. Sci.: Part B–Physics B42, 325–339.CrossRefGoogle Scholar
Zhao, Z., Zheng, W., Tian, H., Yu, W., Han, D., Li, B., 2007. Crystallization behaviors of secondarily quenched nylon 6. Mater. Lett. 61, 925–930.CrossRefGoogle Scholar
Ziabicki, A. 1976. Fundamentals of Fibre Formation. John Wiley & Sons, London.Google Scholar
Zussman, E., Rittel, D., Yarin, A. L., 2003. Failure modes of electrospun nanofibers. Appl. Phys. Lett. 82, 3958–3960.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×