To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We resolve a conjecture proposed by D.E. Knuth concerning a recurrence arising in the satisfiability problem. Knuth's recurrence resembles recurrences arising in the analysis of tries, in particular PATRICIA tries, and asymmetric leader election. We solve Knuth's recurrence exactly and asymptotically, using analytic techniques such as the Mellin transform and analytic depoissonization.
We define the notion of smooth supercritical compositional structures. Two well-known examples are compositions and graphs of given genus. The ‘parts’ of a graph are the subgraphs that are maximal trees. We show that large part sizes have asymptotically geometric distributions. This leads to asymptotically independent Poisson variables for numbers of various large parts. In many cases this leads to asymptotic formulas for the probability of being gap-free and for the expected values of the largest part sizes, number of distinct parts and number of parts of multiplicity k.
Let ${\cal A}$ be a minor-closed class of labelled graphs, and let ${\cal G}_{n}$ be a random graph sampled uniformly from the set of n-vertex graphs of ${\cal A}$. When n is large, what is the probability that ${\cal G}_{n}$ is connected? How many components does it have? How large is its biggest component? Thanks to the work of McDiarmid and his collaborators, these questions are now solved when all excluded minors are 2-connected.
Using exact enumeration, we study a collection of classes ${\cal A}$ excluding non-2-connected minors, and show that their asymptotic behaviour may be rather different from the 2-connected case. This behaviour largely depends on the nature of the dominant singularity of the generating function C(z) that counts connected graphs of ${\cal A}$. We classify our examples accordingly, thus taking a first step towards a classification of minor-closed classes of graphs. Furthermore, we investigate a parameter that has not received any attention in this context yet: the size of the root component. It follows non-Gaussian limit laws (Beta and Gamma), and clearly merits a systematic investigation.
We define a sequence of tree-indexed processes closely related to the operation of the QuickSelect search algorithm (also known as Find) for all the various values of n (the number of input keys) and m (the rank of the desired order statistic among the keys). As a ‘master theorem’ we establish convergence of these processes in a certain Banach space, from which known distributional convergence results as n → ∞ about
(1) the number of key comparisons required
are easily recovered
(a) when m/n → α ∈ [0, 1], and
(b) in the worst case over the choice of m.
From the master theorem it is also easy, for distributional convergence of
(2) the number of symbol comparisons required,
both to recover the known result in the case (a) of fixed quantile α and to establish our main new result in the case (b) of worst-case Find.
Our techniques allow us to unify the treatment of cases (1) and (2) and indeed to consider many other cost functions as well. Further, all our results provide a stronger mode of convergence (namely, convergence in Lp or almost surely) than convergence in distribution. Extensions to MultipleQuickSelect are discussed briefly.
We consider the problem of enumerating d-irreducible maps, i.e., planar maps all of whose cycles have length at least d, and such that any cycle of length d is the boundary of a face of degree d. We develop two approaches in parallel: the natural approach via substitution, where these maps are obtained from general maps by a replacement of all d-cycles by elementary faces, and a bijective approach via slice decomposition, which consists in cutting the maps along shortest paths. Both lead to explicit expressions for the generating functions of d-irreducible maps with controlled face degrees, summarized in some elegant ‘pointing formula’. We provide an equivalent description of d-irreducible slices in terms of so-called d-oriented trees. We finally show that irreducible maps give rise to a hierarchy of discrete integrable equations which include equations encountered previously in the context of naturally embedded trees.
Formal grammars such as L-systems have long been used to describe plant growth dynamics. In this article, they are used for a new purpose. The aim is to build a symbolic method that enables the computation of the stochastic distribution associated with the number of complex structures in plants whose organogenesis is driven by a multitype branching process. For that purpose, a new combinatorial framework is set in which plant structure is coded by a Dyck word. Moreover, organogenesis is represented by stochastic F0L-systems. In doing so, the problem is equivalent to determining the distribution of patterns in random words generated by a stochastic F0L-system. This method finds interesting applications in the parameter identification of stochastic models of plant development.
Starting from an n-by-n matrix of zeros, choose uniformly random zero entries and change them to ones, one at a time, until the matrix becomes invertible. We show that with probability tending to one as n → ∞, this occurs at the very moment the last zero row or zero column disappears. We prove a related result for random symmetric Bernoulli matrices, and give quantitative bounds for some related problems. These results extend earlier work by Costello and Vu [10].
We study the diameter of a family of random graphs on the torus that can be used to model wireless networks. In the random connection model two points x and y are connected with probability g(y−x), where g is a given function. We prove that the diameter of the graph is bounded by a constant, which depends only on ‖g‖1, with high probability as the number of vertices in the graph tends to infinity.
Let H be a graph, and let CH(G) be the number of (subgraph isomorphic) copies of H contained in a graph G. We investigate the fundamental problem of estimating CH(G). Previous results cover only a few specific instances of this general problem, for example the case when H has degree at most one (the monomer-dimer problem). In this paper we present the first general subcase of the subgraph isomorphism counting problem, which is almost always efficiently approximable. The results rely on a new graph decomposition technique. Informally, the decomposition is a labelling of the vertices such that every edge is between vertices with different labels, and for every vertex all neighbours with a higher label have identical labels. The labelling implicitly generates a sequence of bipartite graphs, which permits us to break the problem of counting embeddings of large subgraphs into that of counting embeddings of small subgraphs. Using this method, we present a simple randomized algorithm for the counting problem. For all decomposable graphs H and all graphs G, the algorithm is an unbiased estimator. Furthermore, for all graphs H having a decomposition where each of the bipartite graphs generated is small and almost all graphs G, the algorithm is a fully polynomial randomized approximation scheme.
We show that the graph classes of H for which we obtain a fully polynomial randomized approximation scheme for almost all G includes graphs of degree at most two, bounded-degree forests, bounded-width grid graphs, subdivision of bounded-degree graphs, and major subclasses of outerplanar graphs, series-parallel graphs and planar graphs of large girth, whereas unbounded-width grid graphs are excluded. Moreover, our general technique can easily be applied to proving many more similar results.
We prove that the number of 1324-avoiding permutations of length n is less than $(7+4\sqrt{3})^n$. The novelty of our method is that we injectively encode such permutations by a pair of words of length n over a finite alphabet that avoid a given factor.
This is an advanced 2001 textbook on modal logic, a field which caught the attention of computer scientists in the late 1970s. Researchers in areas ranging from economics to computational linguistics have since realised its worth. The book is for novices and for more experienced readers, with two distinct tracks clearly signposted at the start of each chapter. The development is mathematical; prior acquaintance with first-order logic and its semantics is assumed, and familiarity with the basic mathematical notions of set theory is required. The authors focus on the use of modal languages as tools to analyze the properties of relational structures, including their algorithmic and algebraic aspects, and applications to issues in logic and computer science such as completeness, computability and complexity are considered. Three appendices supply basic background information and numerous exercises are provided. Ideal for anyone wanting to learn modern modal logic.
Boolean functions are perhaps the most basic objects of study in theoretical computer science. They also arise in other areas of mathematics, including combinatorics, statistical physics, and mathematical social choice. The field of analysis of Boolean functions seeks to understand them via their Fourier transform and other analytic methods. This text gives a thorough overview of the field, beginning with the most basic definitions and proceeding to advanced topics such as hypercontractivity and isoperimetry. Each chapter includes a 'highlight application' such as Arrow's theorem from economics, the Goldreich–Levin algorithm from cryptography/learning theory, Håstad's NP-hardness of approximation results, and 'sharp threshold' theorems for random graph properties. The book includes roughly 450 exercises and can be used as the basis of a one-semester graduate course. It should appeal to advanced undergraduates, graduate students and researchers in computer science theory and related mathematical fields.
Indispensable for students, invaluable for researchers, this comprehensive treatment of contemporary quasi–Monte Carlo methods, digital nets and sequences, and discrepancy theory starts from scratch with detailed explanations of the basic concepts and then advances to current methods used in research. As deterministic versions of the Monte Carlo method, quasi–Monte Carlo rules have increased in popularity, with many fruitful applications in mathematical practice. These rules require nodes with good uniform distribution properties, and digital nets and sequences in the sense of Niederreiter are known to be excellent candidates. Besides the classical theory, the book contains chapters on reproducing kernel Hilbert spaces and weighted integration, duality theory for digital nets, polynomial lattice rules, the newest constructions by Niederreiter and Xing and many more. The authors present an accessible introduction to the subject based mainly on material taught in undergraduate courses with numerous examples, exercises and illustrations.
Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides a theoretical account of the fundamentals underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics, the book covers a wide array of central topics unaddressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for advanced undergraduates or beginning graduates, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics and engineering.
Process algebra is a widely accepted and much used technique in the specification and verification of parallel and distributed software systems. This book sets the standard for the field. It assembles the relevant results of most process algebras currently in use, and presents them in a unified framework and notation. The authors describe the theory underlying the development, realization and maintenance of software that occurs in parallel or distributed systems. A system can be specified in the syntax provided, and the axioms can be used to verify that a composed system has the required external behaviour. As examples, two protocols are completely specified and verified in the text: the Alternating-Bit Protocol for Data Communication, and Fischer's Protocol of Mutual Exclusion. The book serves as a reference text for researchers and graduate students in computer science, offering a complete overview of the field and referring to further literature where appropriate.
We consider a recently defined notion of k-abelian equivalence of words byconcentrating on avoidance problems. The equivalence class of a word depends on thenumbers of occurrences of different factors of length k for a fixed naturalnumber k andthe prefix of the word. We have shown earlier that over a ternary alphabet k-abelian squares cannot beavoided in pure morphic words for any natural number k. Nevertheless,computational experiments support the conjecture that even 3-abelian squares can beavoided over ternary alphabets. In this paper we establish the first avoidance resultshowing that by choosing k to be large enough we have an infinitek-abeliansquare-free word over three letter alphabet. In addition, this word can be obtained as amorphic image of a pure morphic word.
We consider numeration systems with base β and −β, for quadratic Pisot numbers β and focus on comparingthe combinatorial structure of the sets Zβ and Z− β of numberswith integer expansion in base β, resp. − β. Our main result is the comparison of languagesof infinite words uβ andu−β coding the ordering of distances betweenconsecutive β- and (−β)-integers. It turns out that for a class of rootsβ ofx2 −mx − m, the languages coincide,while for other quadratic Pisot numbers the language of uβ can be identified onlywith the language of a morphic image of u− β. We also study thegroup structure of (−β)-integers.
The spread of a connected graph G was introduced by Alon, Boppana and Spencer [1], and measures how tightly connected the graph is. It is defined as the maximum over all Lipschitz functions f on V(G) of the variance of f(X) when X is uniformly distributed on V(G). We investigate the spread for certain models of sparse random graph, in particular for random regular graphs G(n,d), for Erdős–Rényi random graphs Gn,p in the supercritical range p>1/n, and for a ‘small world’ model. For supercritical Gn,p, we show that if p=c/n with c>1 fixed, then with high probability the spread of the giant component is bounded, and we prove corresponding statements for other models of random graphs, including a model with random edge lengths. We also give lower bounds on the spread for the barely supercritical case when p=(1+o(1))/n. Further, we show that for d large, with high probability the spread of G(n,d) becomes arbitrarily close to that of the complete graph $\mathsf{K}_n$.
We extend the conductance and canonical paths methods to the setting of general finite Markov chains, including non-reversible non-lazy walks. The new path method is used to show that a known bound for the mixing time of a lazy walk on a Cayley graph with a symmetric generating set also applies to the non-lazy non-symmetric case, often even when there is no holding probability.