To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For efficient visual servoing of an “eye-in-hand” robot, the concepts of Augmented Image Space and Transformed Feature Space are presented in the paper. A formal definition of image features as functionals is given along with a technique to use defined image features for visual servoing. Compared with other known methods, the proposed concepts reduce the computational burden for visual feedback, and enhance the flexibility in describing the vision-based task. Simulations and real experiments demonstrate that the proposed concepts are useful and versatile tools for the industrial robot vision tasks, and thus the visual servoing problem can be dealt with more systematically.
When applied to rapidly moving objects with complex trajectories, the information-rate limitation imposed by video-camera frame rates impairs the effectiveness of structured-light techniques in real-time robot servoing. To improve the performance of such systems, the use of fast infra-red proximity detectors to augment visual guidance in the final phase of target acquisition was explored. It was found that this approach was limited by the necessity of employing a different range/intensity calibration curve for the proximity detectors for every object and for every angle of approach to complex objects. Consideration of the physics of the detector process suggested that a single log-linear parametric family could describe all such calibration curves, and this was confirmed by experiment. From this result, a technique was devised for cooperative interaction between modalities, in which the vision sense provided on-the-fly determination of calibration parameters for the proximity detectors, for every approach to a target, before passing control of the system to the other modality. This technique provided a three hundred percent increase in useful manipulator velocity, and improved performance during the transition of control from one modality to the other.
This report describes a new touch sensing concept in which active, exploratory touching resembles the manner in which humans use their fingertips. The concept utilizes the vibrations produced during sliding motion of the sensor to provide information for characterizing objects and features. The sensing system consists of a textured compliant artificial “skin”, a transduction element, and means for recognizing items of interest.
A relatively simple prototype was fabricated and tested for a range of potentially useful tactile tasks. Results from these experiments demonstrate the promise of the concept. The prototype sensor is shown to be effective at recognizing feature size and shape, patterns of features, feature orientation, feature position, and surface texture.
In this paper the joint trajectories of a manipulator, which avoids obstacles in the work space and follows given path, are planned considering the dynamics of the manipulator system. The planning problem has four types of constraints: collision-free conditions, structural joints movable ranges, joints velocity limits and actuators input limits. This problem is formulated using artificial potentials which give feasible joint movements under these constraints. An algorithm using the linear programming is given to solve the problem. This algorithm enables the successive adjustment of the weighting factors of artificial potentials and gives the desired joint trajectories. The algorithm is effectively applied to the planar movements of a manipulator with four links and four degrees of freedom.
Airborne ultrasound based sensor systems have been applied to a variety of problems in robotics and advanced manufacturing. These include slot and hole inspection, and systems suitable for workspace imaging and autonomous guided vehicle (AGV) navigation. The transmission line matrix (TLM) method of modelling wave propagation has been used in the evaluation of these systems. The model gives both graphical and numerical outputs, and allows an improved understanding of the interaction of ultrasonic waves and targets to be obtained.
This paper presents the findings of a research programme leading to the development of a robotic system for packaging poultry portions. The results show that an integrated system, incorporating machine vision and robots, can be made feasible for industrial use. The elements of this system, including the end-effector, the vision module, the robot hardware and the system software are presented. Models and algorithms for automatic recognition and handling of poultry portions are discussed.
This paper addresses the kinematic workspaces of a walking machine and their graphical representation. The workspaces for walking machines are denned and the methods for investigating various workspaces are presented; the kinematic workspace constraints are established; the displacement is analysed; an algorithm for investigation of kinematic workspaces is presented; and the position and orientation kinematic workspaces are analysed and graphically represented for an example walking machine design.
Due to the essential development of different means of numerical computation in the last years, new prospects have been opened for realization of different advanced control methods as conventional reasoning, fuzzy rule or ANN-based AI controls. However, it can clearly be seen, that each of these methods have significant technological limits making it expedient to seek compromises between the application of such methods and certain particular hardware solutions designed for a concrete problem. The aim of this paper is to show that in quite wide a range of practically important control tasks appropriate hardware solutions can be elaborated and combined with the above methods.
After discussing the advent of the Age of Automation, the author considers the number of robots in operation throughout the world and the forecasts of their manufacture for each country. Attention is then drawn to the international exchange of research and technological information, in particular to the frequent symposia on industrial robots (ISIR). In addition to ISIR, international conferences on advanced robotics are also envisaged (ICAR). Finally, some details are given of international cooperation in the realm of industrial research.
A method that has been proposed for the design of a control system of a muti-link arm is the optimum approach applied to the system linearized around its nominal trajectory, i.e. the dynamic trajectory that the manipulator should follow. This method works, in as much as the initial deviation from the reference trajectory is small enough. When such is not the case, it is necessary to take into account the quadratic term in the approximation, and the paper proposes a small parameter technique to solve the corresponding optimum control problem which otherwise involves cumbersome calculations.