To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider random graphs with a fixed degree sequence. Molloy and Reed [11, 12] studied how the size of the giant component changes according to degree conditions. They showed that there is a phase transition and investigated the order of components before and after the critical phase. In this paper we study more closely the order of components at the critical phase, using singularity analysis of a generating function for a branching process which models the random graph with a given degree sequence.
Recently there has been a growing interest in research in tabling in the logic programming community because of its usefulness in a variety of application domains including program analysis, parsing, deductive databases, theorem proving, model checking, and logic-based probabilistic learning. The main idea of tabling is to memorize the answers to some subgoals and use the answers to resolve subsequent variant subgoals. Early resolution mechanisms proposed for tabling such as OLDT and SLG rely on suspension and resumption of subgoals to compute fixpoints. Recently, the iterative approach named linear tabling has received considerable attention because of its simplicity, ease of implementation, and good space efficiency. Linear tabling is a framework from which different methods can be derived on the basis of the strategies used in handling looping subgoals. One decision concerns when answers are consumed and returned. This article describes two strategies, namely, lazy and eager strategies, and compares them both qualitatively and quantitatively. The results indicate that, while the lazy strategy has good locality and is well suited for finding all solutions, the eager strategy is comparable in speed with the lazy strategy and is well suited for programs with cuts. Linear tabling relies on depth-first iterative deepening rather than suspension to compute fixpoints. Each cluster of interdependent subgoals as represented by a topmost looping subgoal is iteratively evaluated until no subgoal in it can produce any new answers. Naive re-evaluation of all looping subgoals, albeit simple, may be computationally unacceptable. In this article, we also introduce semi-naive optimization, an effective technique employed in bottom-up evaluation of logic programs to avoid redundant joins of answers, into linear tabling. We give the conditions for the technique to be safe (i.e., sound and complete) and propose an optimization technique called early answer promotion to enhance its effectiveness. Benchmarking in B-Prolog demonstrates that with this optimization linear tabling compares favorably well in speed with the state-of-the-art implementation of SLG.
Let denote the set of unrooted labelled trees of size n and let ℳ be a particular (finite, unlabelled) tree. Assuming that every tree of is equally likely, it is shown that the limiting distribution as n goes to infinity of the number of occurrences of ℳ is asymptotically normal with mean value and variance asymptotically equivalent to μn and σ2n, respectively, where the constants μ>0 and σ≥0 are computable.
Given two trees (a target T and a pattern P) and a natural number w, window embedded subtree problems consist in deciding whether P occurs as an embedded subtreeof T and/or finding the number of size (at most) w windows of T which contain pattern P as an embedded subtree. P is an embedded subtree of T if P can be obtained by deleting some nodes from T (if a node v is deleted, all edges adjacent to v are also deleted, and outgoing edges are replaced by edges going from the parent of v (if it exists) to the children of v).Deciding whether P is an embedded subtree of T is known to be NP-complete. Our algorithms run in time O(|T|22|P|) where |T| (resp. |P|) is the size of T (resp. P).
In this paper, we design a position/force controller for cooperative robots during constrained motion. The proposed scheme is based on the knowledge of the manipulator dynamics and does not require measurements of link velocity or end-effector contact forces. A well-known velocity observer and the design of a force observer are used. The validity of the proposed method is verified by means of experimental results.
This paper is to investigate inherent oscillations problems of potential field methods (PFMs) for nonholonomic robots in dynamic environments. In prior work, we proposed a modification of Newton's method to eliminate oscillations for omnidirectional robots in static environment. In this paper, we develop control laws for nonholonomic robots in dynamic environment using modifications of Newton's method. We have validated this technique in a multi-robot search-and-forage task. We found that the use of the modifications of Newton's method, which applies anywhere C2 continuous navigation functions are defined, can greatly reduce oscillations and speed up the robot's movement, when compared to the standard gradient approaches.
This paper presents analysis and experimental verifications of a new robot manipulator with five degrees of freedom developed for the buffing operation of shoes. First, the forward and inverse kinematics are analyzed. Next, an analytic closed-form solution is rigorously derived for the joint angles corresponding to the position and orientation of the end-effector in Cartesian coordinates. A control system, including input/output interfaces and the related electronic system, is designed for the control of the mechanical structure of the buffing robot. Then, peripheral systems integrated with the conveyer, transfer device, and fixture device are designed for the sequential buffing process of shoes. Also, a graphic user interface (GUI) program including the forward/inverse kinematics, control algorithm, and communication program to interact the robot with the peripheral systems is developed by using visual C++ language. A new flexible toolholder (FTH) is proposed to compensate for the excessive applied force between deburring tools and shoes. Finally, the test results are provided to demonstrate the effectiveness of the proposed scheme.
This paper studies the mechanical configuration and the periodic gaits of multi-legged locomotion systems based on its kinematic and dynamic models. The purpose is to determine the system performance during walking, and the best set of locomotion variables that minimize a set of optimization indices. In this perspective, two kinematic and four dynamic indices are formulated to quantitatively measure the performance of the walking robot. The kinematic indices consist of the perturbation analysis and the locomobility measure, and the dynamic performance indices of the walking robot locomotion are the mean absolute density of energy, the mean power density dispersion, the density of power lost and the mean force at the body-legs interface. A set of model-based simulation experiments reveals the system configuration and the type of movements that lead to a better performance, for a specific locomotion mode, from the viewpoint of the proposed indices.
Cameron introduced the orbit algebra of a permutation group and conjectured that this algebra is an integral domain if and only if the group has no finite orbit. We prove that this conjecture holds and in fact that the age algebra of a relational structure R is an integral domain if and only if R is age-inexhaustible. We deduce these results from a combinatorial lemma asserting that if a product of two non-zero elements of a set algebra is zero then there is a finite common tranversal of their supports. The proof is built on Ramsey theorem and the integrity of a shuffle algebra.
The k-core of a graph G is the maximal subgraph of G having minimum degree at least k. In 1996, Pittel, Spencer and Wormald found the threshold λc for the emergence of a non-trivial k-core in the random graph G(n, λ/n), and the asymptotic size of the k-core above the threshold. We give a new proof of this result using a local coupling of the graph to a suitable branching process. This proof extends to a general model of inhomogeneous random graphs with independence between the edges. As an example, we study the k-core in a certain power-law or ‘scale-free’ graph with a parameter c controlling the overall density of edges. For each k ≥ 3, we find the threshold value of c at which the k-core emerges, and the fraction of vertices in the k-core when c is ϵ above the threshold. In contrast to G(n, λ/n), this fraction tends to 0 as ϵ→0.
A major technical challenge in controlling modular and reconfigurable robots is associated with the kinematics and dynamic model uncertainties caused by reconfiguration. In parallel, conventional model uncertainties such as uncompensated joint friction still persist. This paper presents a modular distributed control technique for modular and reconfigurable robots that can instantly adapt to robot reconfigurations. Under the proposed control method that is based on joint torque sensing, a modular and reconfigurable robot is stabilized joint by joint, and modules can be added or removed without the need to adjust control parameters of the other modules of the robot. Model uncertainties associated with link and payload masses are compensated using joint torque sensor measurement. The remaining model uncertainties, including uncompensated dynamic coupling and joint friction, are compensated by a decomposition-based robust controller. Simulation results have confirmed the effectiveness of the proposed method.
This paper suggests one possible mechanism for the biological flexor reflex by emulating a cat's behavior with its robotic counterpart, making it capable of walking around and clearing obstacles autonomously in various environments. A central pattern generator and a hip-to-knee mapping function are employed to realize basic rhythmic motion for a quadrupedal robot. When an input from a contact sensor on the robot's toe is detected, a patterned motion generated by the flexor reflex emerges depending on the location of the bumping phase, and replaces the ongoing rhythmic motion of that leg, causing it to be raised high enough to clear the obstacle. By restricting this reflex to within one cycle time of the walk and only to the bumping leg, rhythm and stability of motion are ensured. Numerical simulations and experimental implementation on a physical quadrupedal robot demonstrate the effectiveness of the proposed method.
This paper presents a new type analysis for logic programs. The analysis is performed with a priori type definitions; and type expressions are formed from a fixed alphabet of type constructors. Non-discriminative union is used to join type information from different sources without loss of precision. An operation that is performed repeatedly during an analysis is to detect if a fixpoint has been reached. This is reduced to checking the emptiness of types. Due to the use of non-discriminative union, the fundamental problem of checking the emptiness of types is more complex in the proposed type analysis than in other type analyses with a priori type definitions. The experimental results, however, show that use of tabling reduces the effect to a small fraction of analysis time on a set of benchmarks.
In a balls-in-bins process with feedback, balls are sequentially thrown into bins so that the probability that a bin with n balls obtains the next ball is proportional to f(n) for some function f. A commonly studied case where there are two bins and f(n) = np for p > 0, and our goal is to study the fine behaviour of this process with two bins and a large initial number t of balls. Perhaps surprisingly, Brownian Motions are an essential part of both our proofs.
For p > 1/2, it was known that with probability 1 one of the bins will lead the process at all large enough times. We show that if the first bin starts with balls (for constant λ∈ℝ), the probability that it always or eventually leads has a non-trivial limit depending on λ.
For p ≤ 1/2, it was known that with probability 1 the bins will alternate in leadership. We show, however, that if the initial fraction of balls in one of the bins is > 1/2, the time until it is overtaken by the remaining bin scales like Θ(t1+1/(1-2p)) for p < 1/2 and exp(Θ(t)) for p = 1/2. In fact, the overtaking time has a non-trivial distribution around the scaling factor, which we determine explicitly.
Our proofs use a continuous-time embedding of the balls-in-bins process (due to Rubin) and a non-standard approximation of the process by Brownian Motion. The techniques presented also extend to more general functions f.
(1) Shepherdson proved that a discrete unitary commutative semi-ring A+ satisfies IE0 (induction scheme restricted to quantifierfree formulas) iff A is integral part of a real closed field; and Berarducci asked about extensions of this criterion when exponentiation is added to the language of rings. Let T range over axiom systems for ordered fields with exponentiation; for three values of T we provide a theory $_{\llcorner} T _{\lrcorner}$ in the language of rings plus exponentiation such that the models (A, expA) of $_{\llcorner} T _{\lrcorner}$ are all integral parts A of models M of T with A+ closed under expM and expA = expM | A+. Namely T = EXP, the basic theory of real exponential fields; T = EXP+ the Rolle and the intermediate value properties for all 2x-polynomials; and T = Texp, the complete theory of the field of reals with exponentiation.(2)$_{\llcorner}$Texp$_{\lrcorner}$ is recursively axiomatizable iff Texp is decidable. $_{\llcorner}$Texp$_{\lrcorner}$ implies LE0(xy) (least element principle for open formulas in the language <,+,x,-1,xy) but the reciprocal is an open question. $_{\llcorner}$Texp$_{\lrcorner}$ satisfies “provable polytime witnessing”: if $_{\llcorner} $Texp$_{\lrcorner}$ proves ∀x∃y : |y| < |x|k)R(x,y) (where $|y|:=_{\llcorner}$log(y)$_{\lrcorner}$, k < ω and R is an NP relation), then it proves ∀x R(x,ƒ(x)) for some polynomial time function f.(3) We introduce “blunt” axioms for Arithmetics: axioms which do as if every real number was a fraction (or even a dyadic number). The falsity of such a contention in the standard model of the integers does not mean inconsistency; and bluntness has both a heuristic interest and a simplifying effect on many questions – in particular we prove that the blunt version of $_{\llcorner}$Texp$_{\lrcorner}$ is a conservative extension of $_{\llcorner} $Texp$_{\lrcorner}$ for sentences in ∀Δ0(xy) (universal quantifications of bounded formulas in the language of rings plus xy). Blunt Arithmetics – which can be extended to a much richer language – could become a useful tool in the non standard approach to discrete geometry, to modelization and to approximate computation with reals.
We give a complete characterization of the class of functions that arethe intensional behaviours of primitive recursive (PR) algorithms. This class is the set of primitive recursive functions that have a null basic caseof recursion. This result is obtained using the property of ultimate unarity and a geometrical approach of sequential functions on N the set of positive integers.
Lorsqu'on observe des orbites de certains automates cellulaires, on peut penser qu'elles apparaissent comme des mélanges d'orbites d'autres automates (composants). Dans cet article, nous tentons de comprendre ce phénomène en construisant un hybride de deux automates au moyen d'un troisième. Deux types d'automates cellulaires sont introduits : les captifs et les foulards. Nous comparons des propriétés de ces hybrides dans le cadre des classifications algébriques introduites par [B. Martin (2001) ; N. Ollinger (2002) ; I. Rapaport (1998) ; G. Teyssier (2005) : PhD. Thesis, École Normale Supérieure de Lyon].
This paper addresses the dynamic dexterity of a planar 2-degree of freedom (DOF) parallel manipulator with virtual constraint. Without simplification, the dynamic formulation is derived by using the virtual work principle. The condition number of the inertia matrix of the dynamic equation is presented as a criterion to evaluate the dynamic dexterity of a manipulator. In order to obtain the best isotropic configuration of the dynamic dexterity in the whole workspace, two global performance indices, which consider the mean value and standard deviation of the condition number of the inertia matrix, respectively, are proposed as the objective function. For a given set of geometrical and inertial parameters, the dynamic dexterity of the parallel manipulator is more isotropic in the center than at the boundaries of the workspace.