To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
On a locally $\lambda$-presentable symmetric monoidal closed category $\mathcal {V}$, $\lambda$-ary enriched equational theories correspond to enriched monads preserving $\lambda$-filtered colimits. We introduce discrete $\lambda$-ary enriched equational theories where operations are induced by those having discrete arities (equations are not required to have discrete arities) and show that they correspond to enriched monads preserving preserving $\lambda$-filtered colimits and surjections. Using it, we prove enriched Birkhof-type theorems for categories of algebras of discrete theories. This extends known results from metric spaces and posets to general symmetric monoidal closed categories.
This article designs a robotic Chinese character writing system that can resist random human interference. Firstly, an innovative stroke extraction method of Chinese characters was devised. A basic Chinese character stroke extraction method based on cumulative direction vectors is used to extract the components that make up the strokes of Chinese characters. The components are then stitched together into strokes based on the sequential base stroke joining method. To enable the robot to imitate handwriting Chinese character skills, we utilised stroke information as the demonstration and modelled the skills using dynamic movement primitives (DMPs). To suppress random human interference, this article combines improved DMPs and conductance control to adjust robot trajectories based on real-time visual measurements. The experimental results show that the proposed method can accurately extract the strokes of most Chinese characters. The designed trajectory adjustment method offers better smoothness and robustness than direct rotating and translating curves. The robot is able to adjust its posture and trajectory in real time to eliminate the negative impacts of human interference.
Program completion is a translation from the language of logic programs into the language of first-order theories. Its original definition has been extended to programs that include integer arithmetic, accept input, and distinguish between output predicates and auxiliary predicates. For tight programs, that generalization of completion is known to match the stable model semantics, which is the basis of answer set programming. We show that the tightness condition in this theorem can be replaced by a less restrictive “local tightness” requirement. From this fact we conclude that the proof assistant anthem-p2p can be used to verify equivalence between locally tight programs.
Most community detection methods focus on clustering actors with common features in a network. However, clustering edges offers a more intuitive way to understand the network structure in many real-life applications. Among the existing methods for network edge clustering, the majority are algorithmic, with the exception of the latent space edge clustering (LSEC) model proposed by Sewell (Journal of Computational and Graphical Statistics, 30(2), 390–405, 2021). LSEC was shown to have good performance in simulation and real-life data analysis, but fitting this model requires prior knowledge of the number of clusters and latent dimensions, which are often unknown to researchers. Within a Bayesian framework, we propose an extension to the LSEC model using a sparse finite mixture prior that supports automated selection of the number of clusters. We refer to our proposed approach as the automated LSEC or aLSEC. We develop a variational Bayes generalized expectation-maximization approach and a Hamiltonian Monte Carlo-within Gibbs algorithm for estimation. Our simulation study showed that aLSEC reduced run time by 10 to over 100 times compared to LSEC. Like LSEC, aLSEC maintains a computational cost that grows linearly with the number of actors in a network, making it scalable to large sparse networks. We developed the R package aLSEC which implements the proposed methodology.
Active labour market policies aim to assist people not in work into work through a range of interventions including job search, training and in-work support and development. While policies and scholarship predominantly focus on jobseekers' engagement with these initiatives, this book sheds light for the first time on the employer's perspective.
In mathematics, it simply is not true that “you can’t prove a negative.” Many revolutionary impossibility theorems reveal profound properties of logic, computation, fairness, and the universe and form the mathematical background of new technologies and Nobel prizes. But to fully appreciate these theorems and their impact on mathematics and beyond, you must understand their proofs.
This book is the first to present complete proofs of these theorems for a broad, lay audience. It fully develops the simplest rigorous proofs found in the literature, reworked to contain less jargon and notation, and more background, intuition, examples, explanations, and exercises. Amazingly, all of the proofs in this book involve only arithmetic and basic logic – and are elementary, starting only from first principles and definitions.
Very little background knowledge is required, and no specialized mathematical training – all you need is the discipline to follow logical arguments and a pen in your hand.
In mathematics, it simply is not true that “you can’t prove a negative.” Many revolutionary impossibility theorems reveal profound properties of logic, computation, fairness, and the universe and form the mathematical background of new technologies and Nobel prizes. But to fully appreciate these theorems and their impact on mathematics and beyond, you must understand their proofs.
This book is the first to present complete proofs of these theorems for a broad, lay audience. It fully develops the simplest rigorous proofs found in the literature, reworked to contain less jargon and notation, and more background, intuition, examples, explanations, and exercises. Amazingly, all of the proofs in this book involve only arithmetic and basic logic – and are elementary, starting only from first principles and definitions.
Very little background knowledge is required, and no specialized mathematical training – all you need is the discipline to follow logical arguments and a pen in your hand.
In this chapter, we look at the moments of a random variable. Specifically we demonstrate that moments capture useful information about the tail of a random variable while often being simpler to compute or at least bound. Several well-known inequalities quantify this intuition. Although they are straightforward to derive, such inequalities are surprisingly powerful. Through a range of applications, we illustrate the utility of controlling the tail of a random variable, typically by allowing one to dismiss certain “bad events” as rare. We begin by recalling the classical Markov and Chebyshev’s inequalities. Then we discuss three of the most fundamental tools in discrete probability and probabilistic combinatorics. First, we derive the complementary first and second moment methods, and give several standard applications, especially to threshold phenomena in random graphs and percolation. Then we develop the Chernoff–Cramer method, which relies on the “exponential moment” and is the building block for large deviations bounds. Two key applications in data science are briefly introduced: sparse recovery and empirical risk minimization.
In this chapter, we move on to coupling, another probabilistic technique with a wide range of applications (far beyond discrete stochastic processes). The idea behind the coupling method is deceptively simple: to compare two probability measures, it is sometimes useful to construct a joint probability space with the corresponding marginals. We begin by defining coupling formally and deriving its connection to the total variation distance through the coupling inequality. We illustrate the basic idea on a classical Poisson approximation result, which we apply to the degree sequence of an Erdos–Renyi graph. Then we introduce the concept of stochastic domination and some related correlation inequalities. We develop a key application in percolation theory. Coupling of Markov chains is the next topic, where it serves as a powerful tool to derive mixing time bounds. Finally, we end with the Chen–Stein method for Poisson approximation, a technique that applies in particular in some natural settings with dependent variables.
In this chapter, we develop spectral techniques. We highlight some applications to Markov chain mixing and network analysis. The main tools are the spectral theorem and the variational characterization of eigenvalues, which we review together with some related results. We also give a brief introduction to spectral graph theory and detail an application to community recovery. Then we apply the spectral theorem to reversible Markov chains. In particular we define the spectral gap and establish its close relationship to the mixing time. We also show in that the spectral gap can be bounded using certain isoperimetric properties of the underlying network. We prove Cheeger’s inequality, which quantifies this relationship, and introduce expander graphs, an important family of graphs with good “expansion.” Applications to mixing times are also discussed. One specific technique is the “canonical paths method,” which bounds the spectral graph by formalizing a notion of congestion in the network.
In mathematics, it simply is not true that “you can’t prove a negative.” Many revolutionary impossibility theorems reveal profound properties of logic, computation, fairness, and the universe and form the mathematical background of new technologies and Nobel prizes. But to fully appreciate these theorems and their impact on mathematics and beyond, you must understand their proofs.
This book is the first to present complete proofs of these theorems for a broad, lay audience. It fully develops the simplest rigorous proofs found in the literature, reworked to contain less jargon and notation, and more background, intuition, examples, explanations, and exercises. Amazingly, all of the proofs in this book involve only arithmetic and basic logic – and are elementary, starting only from first principles and definitions.
Very little background knowledge is required, and no specialized mathematical training – all you need is the discipline to follow logical arguments and a pen in your hand.
In this chapter, we describe a few discrete probability models to which we will come back repeatedly throughout the book. While there exists a vast array of well-studied random combinatorial structures (permutations, partitions, urn models, Boolean functions, polytopes, etc.), our focus is primarily on a limited number of graph-based processes, namely percolation, random graphs, Ising models, and random walks on networks. We will not attempt to derive the theory of these models exhaustively here. Instead we will employ them to illustrate some essential techniques from discrete probability. Note that the toolkit developed in this book is meant to apply to other probabilistic models of interest as well, and in fact many more will be encountered along the way. After a brief review of graph basics and Markov chains theory, we formally introduce our main models. We also formulate various key questions about these models that will be answered (at least partially) later on. We assume that the reader is familiar with the measure-theoretic foundations of probability. A refresher of all required concepts and results is provided in the appendix.