To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Though many research efforts have been devoted to developing robot controllers with uncertainties in the robot dynamics, most research so far has assumed that the model of actuator is known exactly. In implementing the robot controllers, calibration is necessary to identify the exact parameters of the actuator model. When there is an error in calibrating or modeling, it is unknown whether the stability of the system could still be guaranteed. In addition, the actuator model could change as the temperature varies due to overheating of the motor or changes in the ambient temperature. To overcome this problem, we propose in this paper, a task-space controller for the regulation of the robot with an approximate actuator model. We consider second-order dynamics of electric actuators with negligible armature inductances. Sufficient conditions for choosing the feedback gains are presented to guarantee stability.
The sizes of the cycles and unicyclic components in the random graph $G(n, n/2\pm s)$, where $n^{2/3}\ll s \ll n$, are studied using the language of point processes. This refines several earlier results by different authors. Asymptotic distributions of various random variables are given: these distributions include the gamma distributions with parameters 1/4, 1/2 and 3/4, as well as the Poisson–Dirichlet and GEM distributions with parameters 1/4 and 1/2.
The bond percolation critical probability of the Kagomé lattice is greater than 0.5209 and less than 0.5291. The proof of these bounds uses the substitution method, comparing the percolative behaviour of the Kagomé lattice bond model with that of the exactly solved hexagonal lattice bond model via stochastic ordering.
We are developing robotic devices for locomotion training after spinal cord injury. In this paper, we compare two approaches to controlling and quantifying bipedal stepping of spinal rats with robots. In the first approach, the rats stepped on a physical treadmill with robot arms attached to their lower shanks. In the second, the rats stepped on a virtual treadmill generated by the robots. The rats could step on the virtual treadmill, but stepping was more consistent, step height greater, and interlimb coordination improved on the physical treadmill. Implications for the role of sensory input in the control of locomotion and the design robotic of step trainers are discussed.
A proper vertex coloring of a graph is called equitable if the sizes of colour classes differ by at most 1. In this paper, we find the minimum number l=l(d, Δ) such that every d-degenerate graph with maximum degree at most Δ admits an equitable t-colouring for every t[ges ]l when Δ[ges ]27d.
Robot-aids or Rehabilitators are our chosen neologism to name a new class of robotic devices that represent a substantially departure from prior applications of robotics in rehabilitation. Rather than use robotics as an assistive technology for a disabled individual, we envision robots and computers as supporting and enhancing the productivity of clinicians in their efforts to facilitate a disabled individual's recovery. In this paper, we attempt a brief overview of our work in what promises to be a ground breaking field. We discuss the concept of robot-aided neuro-rehabilitation as a means to deliver therapy, measure patient performance, and also as a design tool. To illustrate the broad spectrum of neurological diseases that this technology might impact, we will illustrate each case with a different pathology, namely cerebral vascular accident (CVA – also known as stroke), Parkinson's disease (PD), and cerebral palsy (CP).
Hemiplegia, affecting approximately 75% of all stroke survivors, is a common neurological impairment that results in upper and lower limb sensory and motor deficits. Recovery of coordinated movement of both upper limbs is important for bilateral function and promotes personal independence. This paper describes the philosophy and design of Driver's Simulation Environment for Arm Therapy, a one-degree-of-freedom robotic device that uses a modified Constraint-Induced therapy paradigm to promote coordinated bilateral movement in the upper limbs. Baseline force and tracking data for four neurologically unimpaired subjects who completed bilateral and unilateral steering with the impaired arm using the device are presented.