To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Solving the Arithmetic Word Problems (AWPs) using AI techniques has attracted much attention in recent years. We feel that the current AWP solvers are under-utilizing the relevant domain knowledge. We present a knowledge- and learning-based system that effectively solves AWPs of a specific type—those that involve transfer of objects from one agent to another (Transfer Cases (TC)). We represent the knowledge relevant to these problems as TC Ontology. The sentences in TC-AWPs contain information of essentially four types: before-transfer, transfer, after-transfer, and query. Our system (KLAUS-Tr) uses statistical classifier to recognize the types of sentences. The sentence types guide the information extraction process used to identify the agents, quantities, units, types of objects, and the direction of transfer from the AWP text. The extracted information is represented as an RDF graph that utilizes the TC Ontology terminology. To solve the given AWP, we utilize semantic web rule language (SWRL) rules that capture the knowledge about how object transfer affects the RDF graph of the AWP. Using the TC ontology, we also analyze if the given problem is consistent or otherwise. The different ways in which TC-AWPs can be inconsistent are encoded as SWRL rules. Thus, KLAUS-Tr can identify if the given AWP is invalid and accordingly notify the user. Since the existing datasets do not have inconsistent AWPs, we create AWPs of this type and augment the datasets. We have implemented KLAUS-Tr and tested it on TC-type AWPs drawn from the All-Arith and other datasets. We find that TC-AWPs constitute about 40% of the AWPs in a typical dataset like All-Arith. Our system achieves an impressive accuracy of 92%, thus improving the state-of-the-art significantly. We plan to extend the system to handle AWPs that contain multiple transfers of objects and also offer explanations of the solutions.
We develop a sequential version of the importance sampling technique from Chapter 33 in order to respond to streaming data, thus leading to a sequential Monte Carlo solution. The algorithm will lead to the important class of particle filters. This chapter presents the basic data model and the main construction that enables recursive inference. Many of the inference and learning methods in subsequent chapters will possess a recursive structure, which is a fundamental property to enable them to continually learn in response to the arrival of sequential data measurements. Particle filters are particularly well suited for scenarios involving nonlinear models and non-Gaussian signals, and they have found applications in a wide range of areas where these two features (nonlinearity and non-Gaussianity) are prevalent, including in guidance and control, robot localization, visual tracking of objects, and finance.
The optimal Bayes classifier (52.8) requires knowledge of the conditional probability distribution , which is generally unavailable. In this and the next few chapters, we describe data‐based generative methods that approximate the joint probability distribution , or its components and , directly from the data.
We described several data-based methods for inference and learning in the previous chapters. These methods operate directly on the data to arrive at classification or inference decisions. One key challenge these methods face is that the available training data need not provide sufficient representation for the sample space.
We indicated in the concluding remarks of the previous chapter that feedforward neural networks have powerful modeling capabilities, as reflected by the universal approximation theorem. In one of its versions, the theorem asserts that networks with a single hidden layer are rich enough to model almost any arbitrary function.
We encountered one instance of Bayesian inference in Chapter 50, based on the quadratic loss in the context of mean-square-error (MSE) estimation. We explained there that the optimal solution for inferring a hidden zero-mean random variable from observations of another zero-mean random variable is given by the conditional estimator, , whose computation requires knowledge of the conditional distribution, .
In supervised methods, learning is attained by training on a sufficient amount of labeled data in order to deliver reliable levels of classification. However, there are important situations in practice where data is scarce because it is either difficult or expensive to collect. This scenario leads to few-shot learning, where it is desired to train a classifier by using only a few training samples for each class.
We illustrated in Example 63.2 one limitation of linear separation surfaces by considering the XOR mapping (63.11). The example showed that certain feature spaces are not linearly separable and cannot be resolved by the perceptron algorithm. The result in the example was used to motivate one powerful approach to nonlinear separation surfaces by means of kernel methods.
In the immediate past chapters we developed several techniques for the design of linear classifiers, such as logistic regression, perceptron, and support vector machines (SVM). These algorithms are suitable for data that are linearly separable; otherwise, their performance degrades significantly. In this chapter we explain how the methods can be adjusted to determine nonlinear separation surfaces.
In most multistage decision problems, we are interested in determining the optimal strategy, (i.e., the optimal actions to follow in the state–action space). Most of the algorithms described in the previous chapters focused on evaluating the state and state–action value functions, and , for a given policy . More is needed to learn the optimal policy.
We derived in the previous two chapters procedures for assessing the performance of strategies used by agents interacting with a Markov decision process (MDP), including obtaining optimal policies. Among other methods, we discussed the policy evaluation algorithm (44.116) and the value and policy iterations (45.23) and (45.43), respectively.
Principal component analysis (PCA) is a formidable tool for dimensionality reduction. Given feature vectors in ‐dimensional space, PCA replaces them by lower‐dimensional vectors of size each.