To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
There has been a lot of recent interest in the natural language processing (NLP) community in the computational processing of language varieties and dialects, with the aim to improve the performance of applications such as machine translation, speech recognition, and dialogue systems. Here, we attempt to survey this growing field of research, with focus on computational methods for processing similar languages, varieties, and dialects. In particular, we discuss the most important challenges when dealing with diatopic language variation, and we present some of the available datasets, the process of data collection, and the most common data collection strategies used to compile datasets for similar languages, varieties, and dialects. We further present a number of studies on computational methods developed and/or adapted for preprocessing, normalization, part-of-speech tagging, and parsing similar languages, language varieties, and dialects. Finally, we discuss relevant applications such as language and dialect identification and machine translation for closely related languages, language varieties, and dialects.
With the full system introduced in Chapter 3, now we are ready to discuss how to evaluate the performance of a pattern recognition system: a task that seems easy at first glance but is in fact quite complex. We introduce core concepts such as error and accuracy rates, under- and overfitting, and parameters and hyperparameters. We pay special attention to imbalanced problems. Finally, we present a brief introduction on how confident we can be of the evaluation outcomes. We establish the fact that errors are inevitable in most pattern recognition systems, and also introduce a decomposition of errors into different terms.
This book intends to be self-contained, and this chapter provides a short recap of (almost) all the necessary mathematical background that is required to understand the rest of this book.
HMM (hidden Markov model) is a key tool to handle sequences (time series data), but it is not the only one. We start this chapter with a very brief introduction to a few tools for such data, then devote the rest of this chapter to HMM. We first illustrate what the Markov property is and why it is so important, then naturally present HMM. Three basic problems are introduced in HMM: evaluation, decoding, and learning. Dynamic programming turns out to be the solution to the first two basic problems, and we also introduce Baum--Welch, an algorithm for learning HMM parameters.
Part II introduces domain-independent feature extraction methods, and this chapter presents principal component analysis (PCA). We start from its motivation, using an example. Then we gradually discover and develop the PCA algorithm: starting from zero dimensions, then one dimension, and finally the complete algorithm. We analyze its errors in ideal and practical conditions, and establish the equivalence between maximum variance and minimum reconstruction error. Two important issues are also discussed: when we can use PCA, and the relationship between PCA and SVD (singular value decomposition).
Self-localization in highly dynamic environments is still a challenging problem for humanoid robots with limited computation resource. In this paper, we propose a dual-channel unscented particle filter (DC-UPF)-based localization method to address it. A key novelty of this approach is that it employs a dual-channel switch mechanism in measurement updating procedure of particle filter, solving for sparse vision feature in motion, and it leverages data from a camera, a walking odometer, and an inertial measurement unit. Extensive experiments with an NAO robot demonstrate that DC-UPF outperforms UPF and Monte–Carlo localization with regard to accuracy.
There is no silver bullet: no model can fit all data. Hence, special data requires special algorithms. In this chapter, we deal with two types of special data: sparse data and sequences that can be aligned to each other. We will not dive deep into sparsity learning, which is very complex. Rather, we introduce key concepts: sparsity inducing loss functions, dictionary learning, and what exactly the word sparsity means. For the second part in this chapter, we introduce dynamic time warping (DTW), which deals with sequences that can be aligned with each other (but there are sequences that cannot be aligned, which we will discuss in the next chapter). We use our old tricks: ideas, visualizations, formalizations, to reach the DTW solution. The key idea behind its success is divide-and-conquer and the key technology is dynamic programming.