To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Efficient algorithm integration is a key issue in aerial robotics. However, only a few integration solutions rely on a cognitive approach. Cognitive approaches break down complex problems into independent units that may deal with progressively lower-level data interfaces, all the way down to sensors and actuators. A cognitive architecture defines information flow among units to produce emergent intelligent behavior. Despite the improvements in autonomous decision-making, several key issues remain open. One of these issues is the selection, coordination, and decision-making related to the several specialized tasks required for fulfilling mission objectives. This work addresses decision-making for the cognitive unmanned-aerial-vehicle architecture coined as ARCog. The proposed architecture lays the groundwork for the development of a software platform aligned with the requirements of the state-of-the-art technology in the field. The system is designed to provide high-level decision-making. Experiments prove that ARCog works correctly in its target scenario.