To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Whereas the operation of forgetting has recently seen a considerable amount of attention in the context of Answer Set Programming (ASP), most of it has focused on theoretical aspects, leaving the practical issues largely untouched. Recent studies include results about what sets of properties operators should satisfy, as well as the abstract characterization of several operators and their theoretical limits. However, no concrete operators have been investigated.
In this paper, we address this issue by presenting the first concrete operator that satisfies strong persistence – a property that seems to best capture the essence of forgetting in the context of ASP – whenever this is possible, and many other important properties. The operator is syntactic, limiting the computation of the forgetting result to manipulating the rules in which the atoms to be forgotten occur, naturally yielding a forgetting result that is close to the original program.
A common feature in Answer Set Programming is the use of a second negation, stronger than default negation and sometimes called explicit, strong or classical negation. This explicit negation is normally used in front of atoms, rather than allowing its use as a regular operator. In this paper we consider the arbitrary combination of explicit negation with nested expressions, as those defined by Lifschitz, Tang and Turner. We extend the concept of reduct for this new syntax and then prove that it can be captured by an extension of Equilibrium Logic with this second negation. We study some properties of this variant and compare to the already known combination of Equilibrium Logic with Nelson’s strong negation.
Stream reasoning systems are designed for complex decision-making from possibly infinite, dynamic streams of data. Modern approaches to stream reasoning are usually performing their computations using stand-alone solvers, which incrementally update their internal state and return results as the new portions of data streams are pushed. However, the performance of such approaches degrades quickly as the rates of the input data and the complexity of decision problems are growing. This problem was already recognized in the area of stream processing, where systems became distributed in order to allocate vast computing resources provided by clouds. In this paper we propose a distributed approach to stream reasoning that can efficiently split computations among different solvers communicating their results over data streams. Moreover, in order to increase the throughput of the distributed system, we suggest an interval-based semantics for the LARS language, which enables significant reductions of network traffic. Performed evaluations indicate that the distributed stream reasoning significantly outperforms existing stand-alone LARS solvers when the complexity of decision problems and the rate of incoming data are increasing.
Repeated executions of reasoning tasks for varying inputs are necessary in many applicative settings, such as stream reasoning. In this context, we propose an incremental grounding approach for the answer set semantics. We focus on the possibility of generating incrementally larger ground logic programs equivalent to a given non-ground one; so called overgrounded programs can be reused in combination with deliberately many different sets of inputs. Updating overgrounded programs requires a small effort, thus making the instantiation of logic programs considerably faster when grounding is repeated on a series of inputs similar to each other. Notably, the proposed approach works “under the hood”, relieving designers of logic programs from controlling technical aspects of grounding engines and answer set systems. In this work we present the theoretical basis of the proposed incremental grounding technique, we illustrate the consequent repeated evaluation strategy and report about our experiments.
Gödel’s ontological proof is by now well known based on the 1970 version, written in Gödel’s own hand, and Scott’s version of the proof. In this article new manuscript sources found in Gödel’s Nachlass are presented. Three versions of Gödel’s ontological proof have been transcribed, and completed from context as true to Gödel’s notes as possible. The discussion in this article is based on these new sources and reveals Gödel’s early intentions of a liberal comprehension principle for the higher order modal logic, an explicit use of second-order Barcan schemas, as well as seemingly defining a rigidity condition for the system. None of these aspects occurs explicitly in the later 1970 version, and therefore they have long been in focus of the debate on Gödel’s ontological proof.
This paper proposes the use of Constraint Logic Programming (CLP) to model SQL queries in a data-independent abstract layer by focusing on some semantic properties for signalling possible errors in such queries. First, we define a translation from SQL to Datalog, and from Datalog to CLP, so that solving this CLP program will give information about inconsistency, tautology, and possible simplifications. We use different constraint domains which are mapped to SQL types, and propose them to cooperate for improving accuracy. Our approach leverages a deductive system that includes SQL and Datalog, and we present an implementation in this system which is currently being tested in classroom, showing its advantages and differences with respect to other approaches, as well as some performance data.
A large class of traditional graph and data mining algorithms can be concisely expressed in Datalog, and other Logic-based languages, once aggregates are allowed in recursion. In fact, for most BigData algorithms, the difficult semantic issues raised by the use of non-monotonic aggregates in recursion are solved by Pre-Mappability (${\cal P}$reM), a property that assures that for a program with aggregates in recursion there is an equivalent aggregate-stratified program. In this paper we show that, by bringing together the formal abstract semantics of stratified programs with the efficient operational one of unstratified programs, $\[{\cal P}\]$reM can also facilitate and improve their parallel execution. We prove that $\[{\cal P}\]$reM-optimized lock-free and decomposable parallel semi-naive evaluations produce the same results as the single executor programs. Therefore, $\[{\cal P}\]$reM can be assimilated into the data-parallel computation plans of different distributed systems, irrespective of whether these follow bulk synchronous parallel (BSP) or asynchronous computing models. In addition, we show that non-linear recursive queries can be evaluated using a hybrid stale synchronous parallel (SSP) model on distributed environments. After providing a formal correctness proof for the recursive query evaluation with $\[{\cal P}\]$reM under this relaxed synchronization model, we present experimental evidence of its benefits.
We investigate the problem of cost-optimal planning in ASP. Current ASP planners can be trivially extended to a cost-optimal one by adding weak constraints, but only for a given makespan (number of steps). It is desirable to have a planner that guarantees global optimality. In this paper, we present two approaches to addressing this problem. First, we show how to engineer a cost-optimal planner composed of two ASP programs running in parallel. Using lessons learned from this, we then develop an entirely new approach to cost-optimal planning, stepless planning, which is completely free of makespan. Experiments to compare the two approaches with the only known cost-optimal planner in SAT reveal good potentials for stepless planning in ASP.
Concurrent functional languages that are endowed with symbolic reasoning capabilities such as Maude offer a high-level, elegant, and efficient approach to programming and analyzing complex, highly nondeterministic software systems. Maude’s symbolic capabilities are based on equational unification and narrowing in rewrite theories, and provide Maude with advanced logic programming capabilities such as unification modulo user-definable equational theories and symbolic reachability analysis in rewrite theories. Intricate computing problems may be effectively and naturally solved in Maude thanks to the synergy of these recently developed symbolic capabilities and classical Maude features, such as: (i) rich type structures with sorts (types), subsorts, and overloading; (ii) equational rewriting modulo various combinations of axioms such as associativity, commutativity, and identity; and (iii) classical reachability analysis in rewrite theories. However, the combination of all of these features may hinder the understanding of Maude symbolic computations for non-experienced developers. The purpose of this article is to describe how programming and analysis of Maude rewrite theories can be made easier by providing a sophisticated graphical tool called Narval that supports the fine-grained inspection of Maude symbolic computations.
The Winograd Schema Challenge (WSC) is a natural language understanding task proposed as an alternative to the Turing test in 2011. In this work we attempt to solve WSC problems by reasoning with additional knowledge. By using an approach built on top of graph-subgraph isomorphism encoded using Answer Set Programming (ASP) we were able to handle 240 out of 291 WSC problems. The ASP encoding allows us to add additional constraints in an elaboration tolerant manner. In the process we present a graph based representation of WSC problems as well as relevant commonsense knowledge.
This volume contains the regular papers of the 35th International Conference on Logic Programming (ICLP 2019), held in Las Cruces, New Mexico, USA, from September 20 to September 25, 2019.
In a recent line of research, two familiar concepts from logic programming semantics (unfounded sets and splitting) were extrapolated to the case of epistemic logic programs. The property of epistemic splitting provides a natural and modular way to understand programs without epistemic cycles but, surprisingly, was only fulfilled by Gelfond’s original semantics (G91), among the many proposals in the literature. On the other hand, G91 may suffer from a kind of self-supported, unfounded derivations when epistemic cycles come into play. Recently, the absence of these derivations was also formalised as a property of epistemic semantics called foundedness. Moreover, a first semantics proved to satisfy foundedness was also proposed, the so-called Founded Autoepistemic Equilibrium Logic (FAEEL). In this paper, we prove that FAEEL also satisfies the epistemic splitting property something that, together with foundedness, was not fulfilled by any other approach up to date. To prove this result, we provide an alternative characterisation of FAEEL as a combination of G91 with a simpler logic we called Founded Epistemic Equilibrium Logic (FEEL), which is somehow an extrapolation of the stable model semantics to the modal logic S5.
Abstract solvers are a method to formally analyze algorithms that have been profitably used for describing, comparing and composing solving techniques in various fields such as Propositional Satisfiability (SAT), Quantified SAT, Satisfiability Modulo Theories, Answer Set Programming (ASP), and Constraint ASP.
In this paper, we design, implement and test novel abstract solutions for cautious reasoning tasks in ASP. We show how to improve the current abstract solvers for cautious reasoning in ASP with new techniques borrowed from backbone computation in SAT, in order to design new solving algorithms. By doing so, we also formally show that the algorithms for solving cautious reasoning tasks in ASP are strongly related to those for computing backbones of Boolean formulas. We implement some of the new solutions in the ASP solver wasp and show that their performance are comparable to state-of-the-art solutions on the benchmark problems from the past ASP Competitions.
When programs feature a complex control flow, existing techniques for resource analysis produce cost relation systems (CRS) whose cost functions retain the complex flow of the program and, consequently, might not be solvable into closed-form upper bounds. This paper presents a novel approach to resource analysis that is driven by the result of a termination analysis. The fundamental idea is that the termination proof encapsulates the flows of the program which are relevant for the cost computation so that, by driving the generation of the CRS using the termination proof, we produce a linearly-bounded CRS (LB-CRS). A LB-CRS is composed of cost functions that are guaranteed to be locally bounded by linear ranking functions and thus greatly simplify the process of CRS solving. We have built a new resource analysis tool, named MaxCore, that is guided by the VeryMax termination analyzer and uses CoFloCo and PUBS as CRS solvers. Our experimental results on the set of benchmarks from the Complexity and Termination Competition 2019 for C Integer programs show that MaxCore outperforms all other resource analysis tools.
Magic sets are a Datalog to Datalog rewriting technique to optimize query answering. The rewritten program focuses on a portion of the stable model(s) of the input program which is sufficient to answer the given query. However, the rewriting may introduce new recursive definitions, which can involve even negation and aggregations, and may slow down program evaluation. This paper enhances the magic set technique by preventing the creation of (new) recursive definitions in the rewritten program. It turns out that the new version of magic sets is closed for Datalog programs with stratified negation and aggregations, which is very convenient to obtain efficient computation of the stable model of the rewritten program. Moreover, the rewritten program is further optimized by the elimination of subsumed rules and by the efficient handling of the cases where binding propagation is lost. The research was stimulated by a challenge on the exploitation of Datalog/dlv for efficient reasoning on large ontologies. All proposed techniques have been hence implemented in the dlv system, and tested for ontological reasoning, confirming their effectiveness.
In this paper we consider Epistemic Logic Programs, which extend Answer Set Programming (ASP) with “ epistemic operators” and “ epistemic negation”, and a recent approach to the semantics of such programs in terms of World Views. We propose some observations on the existence and number of world views. We show how to exploit an extended ASP semantics in order to: (i) provide a characterization of world views, different from existing ones; (ii) query world views and query the whole set of world views.
Abstract Dialectical Frameworks (ADFs) are argumentation frameworks where each node is associated with an acceptance condition. This allows us to model different types of dependencies as supports and attacks. Previous studies provided a translation from Normal Logic Programs (NLPs) to ADFs and proved the stable models semantics for a normal logic program has an equivalent semantics to that of the corresponding ADF. However, these studies failed in identifying a semantics for ADFs equivalent to a three-valued semantics (as partial stable models and well-founded models) for NLPs. In this work, we focus on a fragment of ADFs, called Attacking Dialectical Frameworks (ADF+s), and provide a translation from NLPs to ADF+s robust enough to guarantee the equivalence between partial stable models, well-founded models, regular models, stable models semantics for NLPs and respectively complete models, grounded models, preferred models, stable models for ADFs. In addition, we define a new semantics for ADF+s, called L-stable, and show it is equivalent to the L-stable semantics for NLPs.
Answer Set Programming (ASP) is a well-known declarative formalism in logic programming. Efficient implementations made it possible to apply ASP in many scenarios, ranging from deductive databases applications to the solution of hard combinatorial problems. State-of-the-art ASP systems are based on the traditional ground&solve approach and are general-purpose implementations, i.e., they are essentially built once for any kind of input program. In this paper, we propose an extended architecture for ASP systems, in which parts of the input program are compiled into an ad-hoc evaluation algorithm (i.e., we obtain a specific binary for a given program), and might not be subject to the grounding step. To this end, we identify a condition that allows the compilation of a sub-program, and present the related partial compilation technique. Importantly, we have implemented the new approach on top of a well-known ASP solver and conducted an experimental analysis on publicly-available benchmarks. Results show that our compilation-based approach improves on the state of the art in various scenarios, including cases in which the input program is stratified or the grounding blow-up makes the evaluation unpractical with traditional ASP systems.
We present a system for online composite event recognition over streaming positions of commercial vehicles. Our system employs a data enrichment module, augmenting the mobility data with external information, such as weather data and proximity to points of interest. In addition, the composite event recognition module, based on a highly optimised logic programming implementation of the Event Calculus, consumes the enriched data and identifies activities that are beneficial in fleet management applications. We evaluate our system on large, real-world data from commercial vehicles, and illustrate its efficiency.