To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Adversaries can also execute attacks designed to degrade the classifier's ability to distinguish between allowed and disallowed events. These Causative Availability attacks against learning algorithms cause the resulting classifiers to have unacceptably high false-positive rates; i.e., a successfully poisoned classifier will misclassify benign input as potential attacks, creating an unacceptable level of interruption in legitimate activity. This chapter provides a case study of one such attack on the SpamBayes spam detection system. We show that cleverly crafted attack messages—pernicious spam email that an uninformed human user would likely identify and label as spam—can exploit Spam- Bayes' learning algorithm, causing the learned classifier to have an unreasonably high false-positive rate. (Chapter 6 demonstrates Causative attacks that instead result in classifiers with an unreasonably high false-negative rate—these are Integrity attacks.) We also show effective defenses against these attacks and discuss the tradeoffs required to defend against them.
We examine several attacks against the SpamBayes spam filter, each of which embodies a particular insight into the vulnerability of the underlying learning technique. In doing so, we more broadly demonstrate attacks that could affect any system that uses a similar learning algorithm. The attacks we present target the learning algorithm used by the spam filter SpamBayes (spambayes.sourceforge.net), but several other filters also use the same underlying learning algorithm, including BogoFilter (bogofilter.sourceforge. net), the spam filter in Mozilla's Thunderbird email client (mozilla.org), and the machine learning component of SpamAssassin (spamassassin.apache.org). The primary difference between the learning elements of these three filters is in their tokenization methods; i.e., the learning algorithm is fundamentally identical, but each filter uses a different set of features. We demonstrate the vulnerability of the underlying algorithm for SpamBayes because it uses a pure machine learning method, it is familiar to the academic community (Meyer & Whateley 2004), and it is popular with over 700,000 downloads. Although here we only analyze SpamBayes, the fact that these other systems use the same learning algorithm suggests that other filters are also vulnerable to similar attacks. However, the overall effectiveness of the attacks would depend on how each of the other filters incorporates the learned classifier into the final filtering decision.
This article continues the study of the definability in the local substructure $\mathcal{G}_{T,\omega}$ of the ω-Turing degrees, initiated in (Sariev and Ganchev 2014). We show that the class I of the intermediate degrees is definable in $\mathcal{G}_{T,\omega}$.
Adversaries can use Causative attacks to not only disrupt normal user activity (as we demonstrated in Chapter 5) but also to evade the detector by causing it to have many false negatives through an Integrity attack. In doing so, such adversaries can reduce the odds that their malicious activities are successfully detected. This chapter presents a case study of the subspace anomaly detection methods introduced by Lakhina et al. (2004b) for detecting network-wide anomalies such as denial-of-service (DoS) attacks based on the dimensionality reduction technique commonly known as principal component analysis (PCA) (Pearson 1901). We show that by injecting crafty extraneous noise, or chaff, into the network during training, the PCA-based detector can be poisoned so it is unable to effectively detect a subsequent DoS attack.We also demonstrate defenses against these attacks. Specifically, by replacing PCA with a more robust alternative subspace estimation procedure, we show that the resulting detector is resilient to poisoning and maintains a significantly lower false-positive rate when poisoned.
The PCA-based detector we analyze was first proposed by Lakhina et al. (2004b) as method for identifying volume anomalies in a backbone network. This basic technique led to a variety of extensions of the original method (e.g., Lakhina, Crovella & Diot 2004a, 2005a, 2005b) and to related techniques for addressing the problem of diagnosing large-volume network anomalies (e.g., Brauckhoff, Salamatian, & May 2009; Huang, Nguyen, Garofalakis, Jordan, Joseph, & Taft 2007; Li, Bian, Crovella, Diot, Govindan, Iannaccone, & Lakhina 2006; Ringberg, Soule, Rexford, & Diot 2007; Zhang, Ge, Greenberg, & Roughan 2005).While their subspace-based method is able to successfully detect DoS attacks in the network traffic, to do so it assumes the detector is trained on nonmalicious data (in an unsupervised fashion under the setting of anomaly detection). Instead, we consider an adversary that knows that an ISP is using a subspacebased anomaly detector and attempts to evade it by proactively poisoning the training data.
We consider an adversary whose goal is to circumvent detection by poisoning the training data; i.e., an Integrity goal to increase the detector's false-negative rate, which corresponds to the evasion success rate of the attacker's subsequent DoS attack. When trained on this poisoned data, the detector learns a distorted set of principal components that are unable to effectively discern the desired DoS attacks—a Targeted attack.
In this paper, we propose a bioinspired path planning algorithm for finding a high-quality initial solution based on the pipeline of the Rapidly exploring Random Tree (RRT) method by modifying the sampling process. The modification mainly includes controlling the sampling space and using the probabilistic sampling with the two-dimensional Gaussian mixture model. Inspired by the tropism of plants, we use a Gaussian mixture model to imitate the tree’s growth in nature. In a 2D environment, we can get an approximate moving point’s probabilistic distribution, and the initial path can be found much quickly guided by the probabilistic heuristic. At the same time, only a small number of nodes are generated, which can reduce the memory usage. As a meta-algorithm, it can be applicable to other RRT methods and the performance of underlying algorithm is improved dramatically. We also prove that the probabilistic completeness and the asymptotic optimality depend on the original algorithm (other RRTs). We demonstrate the application of our algorithm in different simulated 2D environments. On these scenarios, our algorithm outperforms the RRT and the RRT* methods on finding the initial solution. When embedded into post-processing algorithms like the Informed RRT*, it also promotes the convergence speed and saves the memory usage.
In the second part of this book, we elaborate on Causative attacks, in which an adversary actively mistrains a learner by influencing the training data. We begin in this chapter by considering a simple adversarial learning game that can be theoretically analyzed. In particular, we examine the effect of malicious data in the learning task of anomaly (or outlier) detection. Anomaly detectors are often employed for identifying novel malicious activities such as sending virus-laden email or misusing network-based resources. Because anomaly detectors often serve a role as a component of learning-based detection systems, they are a probable target for attacks. Here we analyze potential attacks specifically against hypersphere-based anomaly detectors, for which a learned hypersphere is used to define the region of normal data and all data that lies outside of this hypersphere's boundary are considered to be anomalous. Hypersphere detectors are used for anomaly detection because they provide an intuitive notion for capturing a subspace of normal points. These detectors are simple to train, and learning algorithms for hypersphere detectors can be kernelized, that is implicitly extended into higher dimensional spaces via a kernel function (Forrest et al. 1996; Rieck & Laskov 2006; Rieck & Laskov 2007; Wang & Stolfo 2004; Wang et al. 2006; Warrender et al. 1999). For our purposes in this chapter, hypersphere models provide a theoretical basis for understanding the types of attacks that can occur and their potential impact in a variety of different settings. The results we present in this chapter provide intriguing insights into the threat of causative attacks. Then, in Chapter 5 and 6, we proceed to describe practical studies of causative attacks motivated by real-world applications of machine learning algorithms.
The topic of hypersphere poisoning first arose in designing virus and intrusion detection systems for which anomaly detectors (including hypersphere detectors) have been used to identify abnormal emails or network packets, and therefor are targets for attacks. This line of work sought to investigate the vulnerability of proposed learning algorithms to adversarial contamination. The threat of an adversary systematically misleading an outlier detector led to the construction of a theoretical model for analyzing the impact of contamination. Nelson (2005) and Nelson & Joseph (2006) first analyzed a simple algorithm for anomaly detection based on bounding the normal data in a mean-centered hypersphere of fixed radius as depicted in Figure 4.1(a).
In this chapter we introduce a framework for qualitatively assessing the security of machine learning systems that captures a broad set of security characteristics common to a number of related adversarial learning settings. There has been a rich set of work that examines the security of machine learning systems; here we survey prior studies of learning in adversarial environments, attacks against learning systems, and proposals for making systems secure against attacks. We identify different classes of attacks on machine learning systems (Section 3.3), categorizing a threat in terms of three crucial properties.
We also present secure learning as a game between an attacker and a defender— the taxonomy determines the structure of the game and its cost model. Further, this taxonomy provides a basis for evaluating the resilience of the systems described by analyzing threats against them to construct defenses. The development of defensive learning techniques is more tentative, but we also discuss a variety of techniques that show promise for defending against different types of attacks.
The work we present not only provides a common language for thinking and writing about secure learning, but goes beyond that to show how the framework applies to both algorithm design and the evaluation of real-world systems. Not only does the framework elicit common themes in otherwise disparate domains but it has also motivated our study of practical machine learning systems as presented in Chapters 5, 6, and 8. These foundational principles for characterizing attacks against learning systems are an essential first step if secure machine learning is to reach its potential as a tool for use in real systems in security-sensitive domains.
This chapter builds on earlier research (Barreno, Nelson, Sears, Joseph, & Tygar 2006; Barreno, Nelson, Joseph, & Tygar 2010; Barreno 2008).
Analyzing the Phases of Learning
Attacks can occur at each of the phases of the learning process that were outlined in Section 2.2. Figure 2.1(a) depicts how data flows through each phase of learning. We briefly outline how attacks against these phases differ.
The Measuring Phase
With knowledge of the measurement process, an adversary can design malicious instances to mimic the measurements of innocuous data. After a successful attack against the measurement mechanism, the system may require expensive reinstrumentation or redesign to accomplish its task.