To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate the angular dynamics of a single spheroidal particle with large particle-to-fluid density ratio in simple shear flows, focusing on the influence of the fluid-inertial torque induced by slip velocity. A linear stability analysis is performed to examine how the fluid-inertial torque, viscous shear torque and particle inertia affect the various stable rotation modes, including logrolling, tumbling and aligning modes. As particle inertia increases, bistable or tristable rotation modes emerge depending on initial conditions. For prolate spheroids, three distinct stable-mode regimes are identified, i.e. logrolling, tumbling and tumbling–logrolling (TL). The presence of these modes depends on particle shape and inertia. For oblate spheroids, when the Stokes number is small, we observe monostable modes (logrolling, tumbling and aligning) and bistable modes (TL, aligning–logrolling) varying with different factors. As Stokes number increases, the tristable mode (aligning–tumbling–logrolling) of oblate spheroids appears. These results of the stability analysis further highlight the intricate and significant effect of fluid-inertial torque compared with the results in the absence of fluid-inertial torque. When we apply fluid-inertial torque to the point-particle model, we reproduce the stable rotation modes observed in particle-resolved simulations, which validates the present stability analysis.
An experimental investigation is conducted to examine the tonal noise generation and flow structures of under-expanded jets interacting with a flat plate. The study combines surface pressure, far-field noise and time-resolved Schlieren visualisations to analyse jet dynamics across a range of isentropic Mach numbers (1.1–1.44) and jet-to-plate distances ($H/D$ = 1, 1.5 and 2.5). The results reveal a distinctly non-monotonic relationship between plate height and the amplitude of screech and plate-induced tones. This behaviour is governed by the constructive and destructive interference between the direct acoustic feedback waves of the jet and those reflected from the plate surface. This interference dictates whether the inherent screech mechanism is suppressed or a new plate-induced tone is amplified. Dynamic mode decomposition and wavenumber-spectral analysis reveal that the plate interaction disrupts the balance between downstream-propagating Kelvin–Helmholtz instabilities and upstream-travelling acoustic waves, fundamentally altering the jet’s resonant feedback loops. A key contribution of this work is the establishment of a direct link between flow dynamics and acoustics through advanced statistical analysis. It is shown that the plate installation asymmetrically amplifies the energy of coherent structures within the jet’s lower shear layer. Crucially, the energy content of these dominant shear-layer structures is found to be the primary driver of the far-field tonal noise magnitude. These findings provide a deeper understanding of the complex coupling between flow and acoustics in installed supersonic jets and offer refined guidance for the development of noise mitigation strategies.
The present experiments investigated the combustion dynamics of single and coaxial laminar diffusion flames within a closed cylindrical acoustic waveguide, focusing on their response to acoustic forcing at a pressure antinode. Nine alternative fuel injectors were used to examine the effect of injector jet diameter and configuration, tube wall thickness, annular-to-inner area and velocity ratio, and jet Reynolds number (below 100) on flame behaviour under different applied frequencies and pressure perturbation amplitudes. Fundamental flame–acoustic coupling phenomena were identified, all of which involved symmetric flame perturbations. These included sustained oscillatory combustion (SOC), multi-frequency periodic liftoff and reattachment (PLOR), permanent flame lift-off (PFLO) with low-level oscillations, and flame blowoff (BO). The phase lag between acoustic forcing and flame response was quantified, providing valuable insights into the coupling dynamics and transition behaviours. Findings revealed how various geometrical and flow characteristics could affect flame stability and resistance to blowoff, even under similar acoustic forcing conditions. Analysis of high-speed spatiotemporal visible imaging using proper orthogonal decomposition (POD) uncovered additional distinct phase portraits and spectral signatures associated with instability transitions, which, coupled with specific dynamical characteristics, enabled new insights into the relevance of injector geometrical characteristics and flow conditions in addressing acoustically coupled combustion instabilities.
Particle suspensions at the interface of turbulent liquids are governed by the balance of capillary attraction, strain-induced drag and lubrication. Here, we extend previous findings, obtained for small particles whose capillary interactions are dominated by quadrupolar-mode deformation of the interface, to larger spherical and disc-shaped particles experiencing monopole-dominant capillarity. By combining pair-approach experiments, two-dimensional turbulent flow realizations and particle imaging, we demonstrate that particles experiencing monopole-dominant attraction exhibit enhanced clustering compared with their quadrupole-dominant counterparts. We introduce an interaction scale defined by balancing viscous drag and capillary attraction, which is compared with the particle size and interparticle distance. This allows us to map the clustering behaviour onto a parameter space solely defined by those characteristic length scales. This yields a unified framework able to predict the tendency to cluster (and the concentration threshold for those clusters to percolate) in a vast array of fluid–particle systems.
With the growing amount of historical infrastructure data available to engineers, data-driven techniques have been increasingly employed to forecast infrastructure performance. In addition to algorithm selection, data preprocessing strategies for machine learning implementations plays an equally important role in ensuring accuracy and reliability. The present study focuses on pavement infrastructure and identifies four categories of strategies to preprocess data for training machine-learning-based forecasting models. The Long-Term Pavement Performance (LTPP) dataset is employed to benchmark these categories. Employing random forest as the machine learning algorithm, the comparative study examines the impact of data preprocessing strategies, the volume of historical data, and forecast horizon on the accuracy and reliability of performance forecasts. The strengths and limitations of each implementation strategy are summarized. Multiple pavement performance indicators are also analysed to assess the generalizability of the findings. Based on the results, several findings and recommendations are provided for short-to medium-term infrastructure management and decision-making: (i) in data-scarce scenarios, strategies that incorporate both explanatory variables and historical performance data provides better accuracy and reliability, (ii) to achieve accurate forecasts, the volume of historical data should at least span a time duration comparable to the intended forecast horizon, and (iii) for International Roughness Index and transverse crack length, a forecast horizon up to 5 years is generally achievable, but forecasts beyond a three-year horizon are not recommended for longitudinal crack length. These quantitative guidelines ultimately support more effective and reliable application of data-driven techniques in infrastructure performance forecasting.
Discover the principles of wireless power transfer for unmanned aerial vehicles, from theoretical modelling to practical applications. This essential guide provides a complete technical perspective and hands-on experience. It combines in-depth theoretical models, such as T-models and M-models, with practical system design, including wireless charging system construction. It presents systematic solutions to real-world challenges in UAV wireless charging, such as mutual inductance disturbances and lightweight units. Providing the resources to tackle complex industry problems this book covers the latest technological insights including advanced control methods, such as PT-symmetric WPT system control schemes and charging range extension techniques. Ideal for professional engineers, designers, and researchers, it provides the tools needed to innovate in UAV technology and power systems. Whether you're developing new systems or optimizing existing ones, this comprehensive resource delivers the insights and techniques to drive progress in wireless power transfer for unmanned aircraft.
Mass dispersion in oscillatory flows is closely tied to various environmental and biological processes, differing markedly from dispersion in steady flows due to the periodic expansion and contraction of particle patches. In this study, we investigate the Taylor–Aris dispersion of active particles in laminar oscillatory flows between parallel plates. Two complementary approaches are employed: a two-time-variable expansion of the Smoluchowski equation is used to facilitate Aris’ method of moments for the pre-asymptotic dispersion, while the generalised Taylor dispersion theory is extended to capture phase-dependent periodic drift and dispersivity in the long-time asymptotic limit. Applying both frameworks, we find that spherical non-gyrotactic swimmers can exhibit greater or lesser diffusivity than passive solutes in purely oscillatory flows, depending on the oscillation frequency. This behaviour arises primarily from the disruption of cross-streamline migration governed by Jeffery orbits. When a steady component is superimposed, oscillation induces a non-monotonic dual effect on diffusivity. We further examine two well-studied shear-related accumulation mechanisms, arising from gyrotaxis and elongation. Although these accumulation effects are less pronounced than in steady flows due to flow unsteadiness, gyrotactic swimmers respond more strongly to the unsteady shear profile, significantly modifying their drift and dispersivity. This work offers new insights into the dispersion of active particles in oscillatory flows, and also provides a foundation for studying periodic active dispersion beyond the oscillatory flow, such as periodic variations in shape and swimming speed.
Flutter in lightweight airfoils under unsteady flows presents a critical challenge in aeroelastic stability and control. This study uncovers phase-dependent effects that drive the onset and suppression of flutter in a freely pitching airfoil at low Reynolds number. By introducing targeted impulsive stiffness perturbations, we identify critical phases that trigger instability. Using phase-sensitivity functions, energy-transfer metrics and dynamic mode decomposition, we show that flutter arises from phase lock-on between structural and fluid modes. Leveraging this insight, we design an energy-optimal, phase-based control strategy that applies transient heaving motions to disrupt synchronisation and arrest unstable growth. This minimal, time-localised control suppresses subharmonic amplification and restores stable periodic motion.
Research on water wave metamaterials based on local resonance has advanced rapidly. However, their application to floating structures for controlling surface gravity waves remains underexplored. In this work, we introduce the floating metaplate, a periodic array of resonators on a floating plate that leverages locally resonant bandgaps to effectively manipulate surface gravity waves. We employ the eigenfunction matching method combined with Bloch’s theorem to solve the wave–structure interaction problem and obtain the band structure of the floating metaplate. An effective model based on averaging is developed, which agrees well with the results of numerical simulation, elucidating the mechanism of bandgap formation. Both frequency- and time-domain simulations demonstrate the floating metaplate’s strong wave attenuation capabilities. Furthermore, by incorporating a gradient in the resonant frequencies of the resonators, we achieve the rainbow trapping effect, where waves of different frequencies are reflected at distinct locations. This enables the design of a broadband wave reflector with a tuneable operation frequency range. Our findings may lead to promising applications in coastal protection, wave energy harvesting and the design of resilient offshore renewable energy systems.
This study proposes a geometric solution to the norm differential game design problem in target-attacker-defender (TAD) engagements, addressing key limitations of conventional zero-effort-miss approaches. By leveraging the geometric analogy between guidance-law-generated trajectories and Dubins paths, we reformulate the derivation of zero-effort-miss-based guidance laws as a Nash equilibrium optimisation problem, with optimal strategies determined through reachable set analysis of Dubins path frontier. The resulting model is a non-convex optimisation problem, which prevents the derivation of traditional state-feedback control laws. To overcome this limitation and enable real-time implementation, we develop a custom back propagation neural network, enhanced with a relaxation factor method for output filtering, a Holt linear trend model for outlier compensation and a saturation function for oscillation suppression. Extensive simulations demonstrate that the proposed framework significantly outperforms baseline methods. These results validate the effectiveness and robustness of our approach for high-performance TAD applications.
In biology, cells undergo deformations under the action of flow caused by the fluid surrounding them. These flows lead to shape changes and instabilities that have been explored in detail for single component vesicles. However, cell membranes are often multicomponent in nature, made up of multiple phospholipids and cholesterol mixtures that give rise to interesting thermodynamics and fluid mechanics. Our work analyses shear flow around a multicomponent vesicle using a small-deformation theory based on vector and scalar spherical harmonics. We set up the problem by laying out the governing momentum equations and the traction balance arising from the phase separation and bending. These equations are solved along with a Cahn–Hilliard equation that governs the coarsening dynamics of the phospholipid–cholesterol mixture. We provide a detailed analysis of the vesicle dynamics (e.g. tumbling, breathing, tank-treading and swinging/phase-treading) in two regimes – when flow is faster than coarsening dynamics (Péclet number ${\textit{Pe}} \gg 1$) and when the two time scales are comparable ($\textit{Pe} \sim O(1)$) – and provide a discussion on when these behaviours occur. The analysis aims to provide an experimentalist with important insights pertaining to the phase separation dynamics and their effect on the deformation dynamics of a vesicle.
In this investigation, the effect of Ekman pumping on a quasi-geostrophic (QG) system is explored via the vertical buoyancy flux. The vertical buoyancy flux is the quantity in QG flows that is responsible for the adiabatic transfer between kinetic energy (KE) and available potential energy (APE), as well as the slow-time evolution of the mean buoyancy. Ekman pumping (or suction) is a phenomenon that arises through conservation of mass at no-slip boundaries of rotating fluid systems. Three-dimensional QG numerical simulations are run with and without Ekman pumping at the bottom boundary, as well as with and without a realistic stratification profile. Through theory and numerical experiment, it is shown that Ekman pumping drives a conversion of energy from APE to KE at small scales, and from KE to APE at large scales, even in the absence of a mean isopycnal slope. It is also shown that Ekman pumping affects the mean buoyancy by slightly weakening the stratification near the bottom boundary.
Analog Electronic Circuits is a core subject for the undergraduate students of Electronics and Communication, Instrumentation, Computer and Electrical Engineering. The subject is also a must read for other branches of engineering like mechanical and civil Engineering. This book aims to provide a detailed coverage of the subject area with emphasis on fundamental concepts. It is an ideal textbook on analog electronic circuits for the undergraduate students, and a reference book for the graduate students. It provides a comprehensive coverage of the subject matter in reader friendly, easy to comprehend language. It includes more than 170 solved examples, 390 practice problems, and 300 figures. It covers discussion on small-signal amplifiers, negative feedback in amplifiers, linear and non-linear applications of operational amplifiers. Practical approximations are used at many places to avoid rigorous analysis methods.
Laminar–turbulent transition in shear flow is complicated and follows many possible routes. In this study, we seek to examine a scenario based on three-dimensional (3-D) waves (Jiang et al., 2020, J. Fluid Mech., vol. 890, A11) in compressible mixing layers, and elucidate the role of 3-D waves in generating streamwise vorticity. The Eulerian–Lagrangian coupled method is used to track the evolution of flow structures. Qualitative evidence shows that localised 3-D waves travel coherently with vortex structures at the early transition stage, which is consistent with the behaviours of 3-D waves in boundary layer transitions. To examine the local flow events surrounding 3-D waves and investigate the cause and effect relationships inherent in wave–vortex interaction, the finite-time Lyapunov exponent and components of the strain rate tensor are integrated into evolving Lagrangian material surfaces. The formation of high-shear layers in the flanks of the 3-D waves is observed, driven by fluid ejection and sweep motions induced by the amplification of 3-D waves. The $\Lambda$-shaped vortices are found born in the vicinity of high-shear regions and then stretched into hairpin-shaped vortices farther downstream. Statistical findings reveal that streamwise vorticity develops concurrently with the significant growth of the oblique mode, while the normal motion of wave structures induces a high strain rate layer in the surrounding region. In addition, conditional statistics underscore the significance of high shear in enstrophy generation. Finally, a conceptual model is proposed to depict the evolution of coherent structures based on the relationship among the 3-D waves, high-shear/strain layers, and $\varLambda$-vortices, providing insights into their collective dynamics within transitional mixing layers.
Finite-amplitude spiral vortex flows are obtained numerically for the Taylor–Couette system in the narrow limit of the gap between two concentric rotating cylinders. These spiral vortex flows bifurcate from circular Couette flow before axisymmetric Taylor vortex flow sets in when the ratio $\mu$ of the angular velocities of the outer to the inner cylinder is less than −0.78, consistent with the results of linear stability analysis by Krueger et al. (J. Fluid Mech., vol. 24, 1966, pp. 521–538), while the boundary of existence of spiral vortex flows is determined not by the linear critical point, but by the saddle-node point of the subcritical spiral vortex flow branch for $\mu \lessapprox -0.75$, when the axial wavenumber $\beta =2.0$. It is found that the nonlinear spiral vortex flows exhibit the mean flow in the axial direction as well as in the azimuthal direction, and that the profiles of both mean-flow components are asymmetric about the centre plane between the gap.
In this work the fascinating dynamics of a two-layered channel flow characterised by the dispersion in composite media within its layers is investigated in depth. The top layer comprises of a fluid zone that allows the fluid to travel along its surface easily (with relatively higher velocity), while the bottom layer is packed with porous media. The primary objective of this research is to do an in-depth investigation of the complex two-dimensional concentration distribution of a passive solute discharged from the inflow region. A multi-scale perturbation analysis approach has been implemented to address the system’s inherent complexity. This accurate determination of the dispersion coefficient, mean concentration distribution and two-dimensional concentration distribution is accomplished deftly using Mei’s homogenisation approach up to second-order approximation, which satisfactorily capture the minor variations in the solute dynamics also. The influence of various flow and porous media elements on these basic parameters is thoroughly investigated, expanding our comprehension of the complex interaction between flow dynamics and porous media’s properties. The effect of Darcy number and the ratio of two viscosities ($M$) on the dispersion coefficient depends on the height of the porous layer. As the Péclet number ratio increases, the dispersion coefficient experiences a concurrent increase, resulting in a decline in the concentration peak. The results of the analytical studies have also been compared with those results obtained using a purely computational method to establish the validity of our studies. Both the sets of results show quite good agreement with each other. In this study, alternate flow models have been used for the porous region, and the outcomes are compared to determine which approach yields more suitable results under different conditions.
The paper discusses the stochastic dynamics of the vortex shedding process in the presence of external harmonic excitation and coloured multiplicative noise. The situation is encountered in a turbulent practical combustor experiencing combustion instability. Acoustic feedback and turbulent flow are imitated by the harmonic and stochastic excitations, respectively. The Ornstein–Uhlenbeck process is used to generate the noise. A low-order model for vortex shedding is used. The Fokker–Planck framework is used to obtain the evolution of the probability density function of the shedding time period. Stochastic lock-in and resonance characteristics are studied for various parameters associated with the harmonic (amplitude, frequency) and noise (amplitude, correlation time, multiplicative noise factor) excitations. We observed that: (i) the stochastic lock-in (s-lock-in) boundary strongly depends on the noise correlation time; (ii) the parameter sites for s-lock-in can be approximately identified from the noise-induced shedding statistics; and (iii) stochastic resonance is significant for some intermediate correlation times. The effects of the above-mentioned observations are discussed in the context of combustion instability.
A deep-learning-based closure model to address energy loss in low-dimensional surrogate models based on proper-orthogonal-decomposition (POD) modes is introduced. Using a transformer-encoder block with an easy-attention mechanism, the model predicts the spatial probability density function of fluctuations not captured by the truncated POD modes. The methodology is demonstrated on the wake of the Windsor body at yaw angles of $\delta = [2.5^\circ ,5^\circ ,7.5^\circ ,10^\circ ,12.5^\circ ]$, with $\delta = 7.5^\circ$ as a test case, and in a realistic urban environment at wind directions of $\delta = [-45^\circ ,-22.5^\circ ,0^\circ ,22.5^\circ ,45^\circ ]$, with $\delta = 0^\circ$ as a test case. Key coherent modes are identified by clustering them based on dominant frequency dynamics using Hotelling’s $T^2$ on the spectral properties of temporal coefficients. These coherent modes account for nearly $60 \,\%$ and $75 \,\%$ of the total energy for the Windsor body and the urban environment, respectively. For each case, a common POD basis is created by concatenating coherent modes from training angles and orthonormalising the set without losing information. Transformers with different size on the attention layer, (64, 128 and 256), are trained to model the missing fluctuations in the Windsor body case. Larger attention sizes always improve predictions for the training set, but the transformer with an attention layer of size 256 slightly overshoots the fluctuation predictions in the Windsor body test set because they have lower intensity than in the training cases. A single transformer with an attention size of 256 is trained for the urban flow. In both cases, adding the predicted fluctuations close the energy gap between the reconstruction and the original flow field, improving predictions for energy, root-mean-square velocity fluctuations and instantaneous flow fields. For instance, in the Windsor body case, the deepest architecture reduces the mean energy error from $37 \,\%$ to $12 \,\%$ and decreases the Kullback–Leibler divergence of velocity distributions from ${\mathcal{D}}_{\mathcal{KL}}=0.2$ to below ${\mathcal{D}}_{\mathcal{KL}}=0.026$.