To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
X-ray diffraction (XRD) characterization of Si powder was carried out using synchrotron and laboratory sources. Microstructural (size-strain) analyses of XRD patterns were carried out using the Rietveld refinement method. Experimentally observed super-Lorentzian shapes of the XRD peaks of Si powder were examined using multimodal profile fitting and bimodal model was found to be adequate. The two components obtained using a bimodal approach are referred as narrow and broad profiles based on their estimated relative peak widths. Peak shapes of crystallite size-dependent parts of narrow and broad profiles were found to be almost Gaussian and Lorentzian in nature, respectively. The simultaneous presence of such peak shapes corresponding to a bimodal microstructure is uncommon in literature. Therefore, in order to explore the role of different natures of XRD peak shapes (size dependent) of the bimodal profiles of Si, detailed microstructural analysis was carried out using the complementary method of whole powder pattern modeling (WPPM) and found to be related to the variance of crystallites' size distribution. Additionally, the effect of instrument resolution (laboratory and synchrotron sources) on the microstructural parameters was also studied. Scanning and transmission electron microscopy were used to characterize the morphology of Si powder and correlate with the microstructural findings of XRD methods.
Crystal structures, microtopography, morphologies, elemental compositions, and ionic conductivity have been investigated for Li5-xLa3(Nb,Ta)O12-y using X-ray diffraction (XRD), field-emission analytical scanning and transmission electron microscopies (S/TEM), and electrochemical impedance spectroscopy. Using Rietveld refinements with powder XRD patterns, we determined that the number of Li atoms in the formula is less than 5 and that Li5-xLa3(NbTa)O12-y crystallizes in the cubic garnet structure with a space group Ia-3d. Sintering at varying temperatures (750–1000 °C) for 5 h in an ambient atmosphere produced distinct outcomes. Rietveld refinements disclosed that the sample sintered at 1000 °C (Li3.43(2)La3Nb1.07(2)Ta0.93(2)O12-y, a = 12.8361(7) Å, V = 2114.96(3) Å3) exhibited the highest ionic conductivity, while the 850 °C sample had the lowest conductivity, characterized by lower Li concentration and impurity phases (Li(Nb,Ta)3O88, Li2CO3). Analyses, including XRD and electron microscopy, confirmed the 1000 °C sample as a relatively phase pure with enhanced Li content (Li/La = 1.2), larger grains (15 μm), and uniform crystallinity. The 1000 °C sample introduced additional partially filled Li3 (96h) sites, promoting Li migration, and enhancing ionic conductivity. The resulting XRD pattern at 1000 °C has been submitted to the Powder Diffraction File as a reference.
Formation of small solid and liquid particles is vital for a variety of natural and technological phenomena, from the evolution of the universe, through atmospheric air pollution and global climate change. Despite its importance, nucleation is still not well understood, and this unique book addresses that need. It develops the theory of nucleation from first principles in a comprehensive and clear way, and uniquely brings together classical theory with contemporary atomistic approaches. Important real-world situations are considered, and insight is given into cases typically not considered such as particle formation in flames and plasmas. Written by an author with more than 35 years of experience in the field, this will be an invaluable reference for senior undergraduates and graduate students in a number of disciplines, as well as for researchers in fields ranging from climate science and astrophysics to design of systems for semiconductor processing and materials synthesis.
The crystal structure of acalabrutinib dihydrate Form III has been refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Acalabrutinib dihydrate Form III crystallizes in space group P21 (#4) with a = 8.38117(5), b = 21.16085(14), c = 14.12494(16) Å, β = 94.5343(6)°, V = 2497.256(20) Å3, and Z = 4 (Z′ = 2) at 295 K. The crystal structure consists of herringbone layers parallel to the ac-plane. Hydrogen bonds between the acalabrutinib and water molecules generate a three-dimensional framework. Each water molecule acts as a donor in two hydrogen bonds and as an acceptor in at least one hydrogen bond. Amino groups and pyridine N atoms link the acalabrutinib molecules into dimers. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).
The crystal structure of ribociclib hydrogen succinate (commonly referred to as ribociclib succinate) has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional theory techniques. Ribociclib hydrogen succinate crystallizes in space group P-1 (#2) with a = 6.52215(4), b = 12.67120(16), c = 18.16978(33) Å, α = 74.0855(8), β = 82.0814(4), γ = 88.6943(1)°, V = 1430.112(6) Å3, and Z = 2 at 295 K. The crystal structure consists of alternating layers of cations and anions parallel to the ab-plane. The protonated N in each ribociclib cation acts as a donor in two strong N–H⋯O hydrogen bonds to two different succinate anions. Strong O–H⋯O hydrogen bonds link the hydrogen succinate anions into chains parallel to the a-axis. N–H⋯N hydrogen bonds link the cations into dimers, with a graph set R2,2(8). The result is a three-dimensional hydrogen bond network. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®)
Linkage fabrics are gaining in popularity and finding applications in architecture, aerospace, healthcare, and fashion because they can deliver materials with bespoke flexibility and strength through the geometric design of linkage nodes. In this article, we provide a perspective on linkage fabrics as a new class of programmable materials. We describe the theory and design principles of these linkage fabrics and show how they can be designed and simulated using digital tools, and fabricated using 3D printing. This digital approach overcomes a major obstacle to the adoption of these materials, namely their complexity. We show how simulation methods can be verified and calibrated through experimental testing. This perspective article also discusses design-led research challenges for linkage fabrics such as the development of wearable assistive devices for those with physical disabilities.
The values of the signal-to-noise ratio are determined, at which the method of processing X-ray diffraction data reveals reflections with intensity less than the noise component of the background. The possibilities of the method are demonstrated on weak reflections of α-quartz. The method of processing X-ray diffraction data makes it possible to increase the possibilities of X-ray phase analysis in determining the qualitative phase composition of multiphase materials with a small (down to 0.1 wt.%) content of several (up to eight) phases.
Meta-structures, including metamaterials and metasurfaces, possess remarkable physical properties beyond those observed in natural materials and thus have exhibited unique wave manipulation abilities ranging from quantum to classical transports. The past decades have witnessed the explosive development and numerous implications of meta-structures in elastic-wave control under the Hermitian condition. However, more notably, a lot of recent research has been made to show that non-Hermitian meta-structures offer novel means for wave manipulation. Non-Hermiticity has enhanced both the accuracy and efficiency of wave steering capabilities. To this end, starting from electromagnetics and acoustics, we mainly review the up-to-date progress of non-Hermitian elastic meta-structures with a focus on their extraordinary elastic-wave control. A variety of promising scenarios realized by non-Hermitian elastic metamaterials and metasurfaces, such as the parity-time-symmetric system and the skin effect, are summarized. Furthermore, the perspectives and challenges of non-Hermitian elastic meta-structures for future key opportunities are outlined.
The crystal structure of alectinib hydrochloride has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Alectinib hydrochloride crystallizes in space group P21/n (#14) with the following parameters: a = 12.67477(7), b = 10.44076(5), c = 20.38501(12) Å, β = 93.1438(7)°, V = 2693.574(18) Å3, and Z = 4 at 295 K. The crystal structure consists of stacks of molecules along the b-axis, and the stacks contain chains of strong N–H⋯Cl hydrogen bonds. One density functional theory calculation moved a proton from an N atom to the Cl, but another calculation yielded a more chemically reasonable result. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®)
A monoclinic C form of rilpivirine hydrochloride, (N6H19C22)Cl, has been obtained and characterized using solid-state 15N, 13C, and 35Cl NMR spectroscopy and multitemperature synchrotron X-ray powder diffraction. The title compound crystallizes in the monoclinic system (space group C2/c, #15) at both room (295.0(2) K) and low (100.0(2) K) temperatures. At room temperature, the following parameters are a = 19.43051(3), b = 13.09431(14), c = 17.10254(18) Å, β = 109.3937(7), V = 4104.48(9) Å3, and Z = 8. The folded molecular conformation of the cation is similar with that of free base rilpivirine with the exception of cyanovinyl group disposition. The anion links cations to infinite chains parallel to the crystallographic c axis using N–H⋯Cl bonds where both amino groups and the protonated pyrimidine ring take part in the H-bonding. The powder patterns have been submitted to the ICDD for inclusion in the Powder Diffraction File™ (PDF®).
Leucites are tetrahedrally coordinated silicate framework structures with some of the silicon framework cations that are partially replaced by divalent or trivalent cations. These structures have general formulae A2BSi5O12 and ACSi2O6, where A is a monovalent alkali metal cation, B is a divalent cation, and C is a trivalent cation. There are also leucite analogs with analogous tetrahedrally coordinated germanate framework structures. These have general formulae A2BGe5O12 and ACGe2O6. In this paper, the Rietveld refinements of three synthetic Ge-leucite analogs with stoichiometries of AAlGe2O6 (A = K, Rb, Cs) are discussed. KAlGe2O6 is I41/a tetragonal and is isostructural with KAlSi2O6. RbAlGe2O6 and CsAlGe2O6 are $I\bar{4}3d$ cubic and are isostructural with KBSi2O6.
The NIST Workshop: Integrating Crystallographic and Computational Approaches to Carbon-Capture Materials for the Mitigation of Climate Change took place from October 31–November 1, 2023 at the National Cybersecurity Center of Excellence (NCCoE) Compound in Rockville, MD, which is an off-campus NIST facility. This workshop provided a forum for experimentalists and theorists working on the structural aspects of CO2 capture and sequestration materials to review the current state of the art in this field and discuss opportunities for collaborative research required to develop tools for rapid determination of the structure and its effect on the direct air capture performance in porous solid sorbents. We had a total of 33 international participants (18 invited speakers) from 17 institutions who were experimentalists and theorists from academia, government, and industry. The workshop was a great success.
The crystal structure of valbenazine has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Valbenazine crystallizes in space group P212121 (#19) with a = 5.260267(17), b = 17.77028(7), c = 26.16427(9) Å, V = 2445.742(11) Å3, and Z = 4 at 295 K. The crystal structure consists of discrete molecules and the mean plane of the molecules is approximately (8,−2,15). There are no obvious strong intermolecular interactions. There is only one weak classical hydrogen bond in the structure, from the amino group to the ether oxygen atom. Two intramolecular and one intermolecular C–H⋯O hydrogen bonds also contribute to the lattice energy. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®)
The crystal structure of brimonidine hydrogen tartrate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Brimonidine hydrogen tartrate crystallizes in space group P21 (#4) with a = 7.56032(2), b = 7.35278(2), c = 30.10149(9) Å, β = 90.1992(2)°, V = 1673.312(10) Å3, and Z = 4 at 295 K. The crystal structure consists of alternating layers of cations and anions parallel to the ab-plane. Each of the hydrogen tartrate anions is linked to itself by very strong charge-assisted O–H⋯O hydrogen bonds into chains along the a-axis. Each hydroxyl group of each tartrate acts as a donor in an O–H⋯O or O–H⋯N hydrogen bond. One of these is intramolecular, but the other three are intermolecular. These hydrogen bonds link the hydrogen tartrate anions into layers parallel to the ab-plane and also link the anion–cation layers. The protonated N atoms act as donors in N–H⋯O or N–H⋯N hydrogen bonds to the carboxyl groups of the tartrates and to a ring nitrogen atom. These link the cations and anions, as well as providing cation–cation links. The amino N atoms of the cations form N–H⋯O hydrogen bonds to hydroxyl groups of the anions. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®)
The crystal structure of nintedanib esylate hemihydrate was refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Nintedanib esylate hemihydrate crystallizes in space group P-1 (#2) with a = 11.5137(1), b = 16.3208(4), c = 19.1780(5) Å, α = 69.0259(12), β = 84.4955(8), γ = 89.8319(6)°, V = 3347.57(3) Å3, and Z = 4 at 295 K. Hydrogen bonds are prominent in the crystal structure. The water molecule forms two medium-strength O–H⋯O hydrogen bonds to one of the esylate anions. The protonated nitrogen atom in each cation forms a N–H⋯O hydrogen bond to an esylate anion. The ring N–H groups form strong intramolecular N–H⋯O hydrogen bonds to carbonyl groups. The ring N–H groups form intramolecular N–H⋯O hydrogen bonds to esylate anions. Many C–H⋅⋅⋅O hydrogen bonds (and one C–H⋯N hydrogen bond), with aromatic C–H, methylene groups and methyl groups as donors, are present. The hydrogen bonding patterns of the two cations differ considerably. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®)
To address the question of how to deliver time-sensitive software for cyber-physical systems (CPS) requires a range of modelling and analysis techniques to be developed and integrated. A number of these required techniques are unique to time-sensitive software where timeliness is a correctness property rather than a performance attribute. This paper focuses on how to obtain worst-case estimates of the software’s execution time; in particular, it considers how workload models are derived from assumptions about the system’s run-time behaviour. The specific contribution of this paper is the exploration of the notion that a system can be subject to more than one workload model. Examples illustrate how such multi-models can lead to improved schedulability and hence more efficient CPS. An important property of the approach is that the derived analysis exhibits model-bounded behaviour. This ensures that the maximum load on the system is never higher than that implied by the individual models.
Pursuing highly efficient aerodynamic efficiency in aircraft has driven the development of morphing wing technology. However, there are still limitations to morphing wing technology, including adaptation of load and deformation, and deformation monitoring and control. This work introduces an intelligent trailing edge structure that balances deformation and load-bearing and achieves deformation monitoring and active control. Firstly, we employ a honeycomb structure for non-uniform filling of the trailing edge. The filling method is obtained through inverse design using a genetic algorithm based on neural networks, allowing the device to undergo continuous deformation while meeting load-bearing requirements. The bending deformation of the wing is achieved using shape memory alloy (SMA) wire. Additionally, we design and fabricate a metal-based multichannel flexible sensor, and based on beam bending theory, we establish the strain–displacement relationship. These sensors are affixed to the trailing edge surface, enabling real-time monitoring and active control of trailing edge deformation. Building an experimental platform to test this system, the results show that the sensors can accurately give feedback on the degree of wing deformation, and the error of active deformation control technology is less than 4%. This provides a new method for the deformation feedback control closed-loop system of intelligent variant wings.
Flexible electronics researchers have been conducting studies to explore the response of flexible stretchable electrodes to strain. The regulation of strain response in current flexible stretchable electrodes relies primarily on altering the material system, interfacial adhesion, or electrode structure. However, modifying the material system or interfacial adhesion can negatively disrupt the stretchable electrode preparation process, making commercialization a significant challenge. Additionally, the material system may be inadequate in extreme environments such as high temperatures. Hence a systematic structural design approach is crucial for effective response modulation of stretchable electrodes. One potential solution is the design of fibre structures from the micro to macro scale. This article focuses on discussing how the response of stretchable electrodes can be modulated by fibres in different states. The discussion includes fibres on elastic films, fibres directly constituting fibrous membranes at the microscopic level, and fibres constituting metamaterials at the fine level. The modulation can be achieved by altering the orientation of the fibres, the geometrical structure of the fibres themselves, and the geometrical structure formed between the fibres. Additionally, the article analyses the current situation of stretchable electrodes in extreme environments such as high temperatures. It also reviews the development of ceramic fibre membranes that can be stretched in high-temperature environments. The authors further discuss how the stretchability of ceramic fibre membranes can be improved through the structuring of ceramic fibre membranes with metamaterials. Ultimately, the goal is to realize stretchable electrodes that can be used in extreme environments such as high temperatures.
Cyber-Physical Systems (CPSs) combine cyber, physical and human activities through computing and network technologies, creating opportunities for benign and malign actions that affect organisations in both the physical and computational spheres. The US National Cyber Security Strategy (US White House, 2023) warns that this exposes crucial systems to disruption over a wide CPS attack surface. The UK National Cyber Security Centre Annual Review (UK National Cyber Security Centre, 2023) acknowledges that, although some organisations are evolving ‘a more holistic view of critical systems rather than purely physical assets’, this is not reflected in governance structures that still tend to treat cyber and physical security separately.
This research investigates a novel method for cultivating mycelium-based leather substitutes using a carefully formulated paste consistency substrate. The primary objectives are to enhance nutrient availability, facilitate scalability, and streamline cultivation processes. The study spans a 21-day cultivation period, during which a flower-based medium is employed, eliminating the need for labor-intensive harvesting techniques. Two fungal species, Ganoderma lucidum (rishi) and Pleurotus djamor (pink oyster) are tested to assess their compatibility with the growth method. These species were chosen based on their rapid colonization rates and inherent resilience. The investigation delves into various combinations of crosslinking agents, including glycerol (a plasticizer), commercial tanner, citric acid, and magnesium sulfate. The effects of these agents on tensile strength are compared and qualitative data is analyzed through the use of scanning electron microscopy (SEM) and stereo microscopy. Furthermore, the study explores the fabrication potential of non-woven textiles derived from mycelium, emphasizing their suitability as eco-friendly leather alternatives. Scaled prototypes are highlighted to demonstrate their feasibility. Post-treatment processes, such as dyeing with bio-based dyes and acrylic leather paint, are evaluated for their aesthetic impact. The research contributes a biodegradable material alternative that addresses the environmental challenges of high textile consumption. The findings add to the growing body of sustainable design methods in the realm of leather-like materials in bio-design.