To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Germanium ion implantation at an energy of 30 keV was used as a different method to re-amorphize thin films of crystalline phase change material Ge2Sb2Te5 (GST). It was found that rather low doses of 5×1013 cm-2 were sufficient to re-amorphize GST. Amorphization was determined by X-ray diffraction (XRD) as well as reflectivity measurements. Re-crystallization characteristics of ion-implantation-amorphized samples was studied using time-resolved XRD. It showed that samples re-crystallize at an increased crystallization temperature with increasing dose compared to as-deposited material. A static laser tester was applied to measure the crystallization times of material that was (1) as–deposited amorphous; (2) crystallized by annealing and re-amorphized by melt-quenching using a laser pulse; and (3) crystallized by annealing and re-amorphized by ion implantation. It was found that as-deposited amorphous and high-dose ion implanted samples had longer crystallization times while melt-quenched amorphous and low-dose ion implanted samples had shorter crystallization times.
AgSbTe2 is the critical component in both LAST-m and TAGS-x system, which are two state-of-the-art mid-temperature thermoelectric bulk nanocomposites. By adjusting the Ag2Te/Sb2Te3 ratio, Sb2Te3 and Ag2Te precipitated samples were obtained with x = 0.68 to 0.74 and x = 0.84 to 0.90 (x as in (Ag2Te)x/2(Sb2Te3)1-x/2), respectively. The single phased AgSbTe2 was obtained with the x value of 0.78 and 0.81, which is consistent of the previous results on the phase diagram of (Ag2Te)x(Sb2Te3)1-x system. Comparing the effect of the two different precipitates, Ag2Te are much effective for the improvements of thermoelectric properties in AgSbTe2 nanocomposites. Utilizing the high-resolution transmission electron microscopy, Ag2Te was observed as nanodots and nano-lamellae embedded in the AgSbTe2 matrix, which can be related to the energy filtering effect for the increase of Seebeck coefficient. The relationship among the composition, microstructure and thermoelectric properties was systematically studied. It can be noticed that the thermoelectric properties of AgSbTe2 system are very sensitive to the composition, especially at low temperature. The maximum figure of merit ZT value of 1.53 was obtained at 500 K for Ag0.84Sb1.16Te2.16 with 40% increase comparing with the single phased sample.
A material subjected to radiation damage will usually experience changes in its physical properties. Measuring these changes in the physical properties provides a basis to study radiation damage in a material which is important for a variety of real world applications from reactor materials to semiconducting devices. When investigating radiation damage, the relative sensitivity of any given property can vary considerably based on the concentration and type of damage present as well as external parameters such as the temperature and starting material composition. By measuring multiple physical properties, these differing sensitivities can be leveraged to provide greater insight into the different aspects of radiation damage accumulation, thereby providing a broader understanding of the mechanisms involved. In this report, self-damage from α-particle decay in Pu is investigated by measuring two different properties: magnetic susceptibility and resistivity. The results suggest that while the first annealing stage obeys second order chemical kinetics, the primary mechanism is not the recombination of vacancy-interstitial close pairs.
A new type of micro-channel plate detector based on hydrogenated amorphous silicon is proposed which overcomes the fabrication and performance issues of glass or bulk silicon ones. This new type of detectors consists in 80-100 μm thick layers of amorphous silicon which are micro-machined by deep reactive ion etching to form the channels. This paper focuses on the structure and fabrication process and presents first results obtained with test devices on electron detection which demonstrate amplification effects. Fabrication and performance issues are also discussed.
Olivine (LiFePO4)-carbon nanofibre composites were synthesized through a combination of electrospinning and solvothermal methods. Morphology, distribution and crystal structure of these composites were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Electrochemical properties of synthesized LiFePO4-carbon fibre composite cathodes have been studied in litium ion coin cells by means of galvanostatic cycling and cyclic voltammetry. As compared to pristine LiFePO4, there was significant improvement in the specific capacity (˜25% at 0.1C rate) of LiFePO4 - ECNF owing to the improved conductivity.
Two Ag/CeO2 nanocomposite samples were prepared by deposition-precipitation (Ag/Ce nominal atomic ratio = 0.03 and 0.12). XPS data suggest the possible presence of traces of Ce(III). Beside Ag (0), oxidized silver species are also revealed in the Ag/CeO2 sample with lower metal content. The deposition of metal increases surface hydroxylation and carbonatation. Methanol interacts molecularly and dissociatively with the samples; oxidation products are observed from low temperature and depend on Ag content. Both the samples reveal a high activity in methanol complete oxidation; traces of partial oxidation products are observed in the sample with lower Ag content.
While silicon nanostructures acquire novel optical properties due to miniaturization, the stability of light emission is severely limited because of exciton trapping due to surface oxidation coming along with the formation of defects. Grafting of organic molecules on a hydrogen-terminated silicon surface via hydrosilylation provides a promising route to stabilize their surface against oxidation. In this communication, we report on the effect of surface passivation on the optical properties of freestanding silicon nanocrystals (Si-NCs). The surface functionalization of hydrogen-terminated Si-NCs with organic molecules was achieved via liquid phase hydrosilylation. We demonstrate that surface functionalization does not preserve the original emission of hydrogen-terminated Si-NCs. It is observed that the emission spectrum of green emitting hydrogen-terminated Si-NCs is red shifted after surface functionalization. We find that the direction of shift does not depend on the type of organic ligands and the reaction conditions, however, the amount of shift can be altered. The factors influencing the shift in the emission spectra of functionalized Si-NCs with respect to hydrogen-terminated samples are discussed.
Titanium dioxide (TiO2) was doped with the combination of several metal ions including platinum (Pt), chromium (Cr), vanadium (V), and nickel (Ni). The doped TiO2 materials were synthesized by standard sol-gel methods with doping levels of 0.1 to 0.5 at.%. The resulting materials were characterized by x-ray diffraction (XRD), BET surface-area measurement, scanning electron microscopy (SEM), and UV-vis diffuse reflectance spectroscopy (DRS). The visible light photocatalytic activity of the codoped samples was quantified by measuring the rate of the oxidation of iodide, the rate of degradation of methylene blue (MB), and the rate of oxidation of phenol in aqueous solutions at λ > 400 nm. 0.3 at.% Pt-Cr-TiO2 and 0.3 at.% Cr-V-TiO2 showed the highest visible light photocatalytic activity with respect to MB degradation and iodide oxidation, respectively. However, none of the codoped TiO2 samples were found to have enhanced photocatalytic activity for phenol degradation when compared to their single-doped TiO2 counterparts.
Plants, when attacked by herbivores emit plant volatile compounds as a defensive mechanism to protect themselves from herbivores and parasites. Secreting these volatiles is not only toxic towards these insects but also aids enemies of the herbivores to recognize infested plants to locate their prey. A low mass fraction carbon black/polyethylene-co-vinylacetate composite sensor was designed and fabricated to detect insect infestation. This sensor was cost efficient, easy to fabricate and was highly stable in air. When an organic vapor is present, the carbon/polymer active layer swells creating a discontinuity in the conducting pathway between adjacent carbon particles, increasing the resistance of the film. When the analyte is no longer present, the polymer will return to its original state, showing a decrease in resistance. A variety of Carbon/black polymer sensors with varying chemical characteristics could be created by using different polymer matrices. Polyethylene-co-vinyl acetate was chosen as the best polymer for this particular application based on its swelling ability in the presence of plant volatiles compared to other polymers. When the carbon concentration of the active layer was low enough to be near the percolation threshold, the sensor can be used as a “chemical switch”. The resistance of the sensor increased significantly mimicking a “switch off” response when exposed to the analyte vapor. When the analyte vapor was no longer present the sensor returned back to its original condition, showing a “switch on” response. The percolation point was obtained when the carbon concentration of the carbon/polymer composite was kept between 0.5-1 wt%. The sensor was tested and found to be sensitive to a variety of volatile organic compounds emitted during insect infestation including γ-terpinene, α-pinene, p-cymene, farnesene, and limonene and cis-hexenyl acetate.
The behavior of two nuclear materials, namely cubic zirconia and urania, is investigated under different irradiation conditions in the low and medium ion energy range (tens of keV to a few MeV). In each case, these materials display a multi-step damage build-up, as revealed by both RBS/C and XRD measurements. It is demonstrated that each step exhibits characteristic features such as damage fraction, elastic strain, nature of defects, and thus presents a specific microstructure. The transition from one step to the following involves radiation defect re-organization which arises to lower the energy of the system.
Spent fuels and high level radioactive wastes which emit high doze of gamma rays could be a promising and long-lasting power source, if the gamma ray energy was effectively converted other forms of energy. In the present study, we have tried to convert gamma ray to electricity directly, with using silicon semiconductor cells made of p-type Si single crystal wafers with various specific resistivities ranging from 0.01 to 1000 Ohm∙cm. On both surfaces of the cell (20×20×0.5mm3), Al and Sb were deposited in vacuum to make electrodes at room temperature. The voltage-current measurement of the cells showed a rectification effect, and Al side was found to work a cathode. This suggests a Schottky junction was formed at the interface between the deposited Al and Si wafer. The cell irradiated by gamma ray in Co-60 irradiation facility in Kyushu Univ. with an absorbed dose of about 200Gy/h, and output voltage and current generated by the irradiation with external resistances varying from 200 to 100,000 Ohm were measured. The maximum electric power obtained for each cell ranged from 0.002 to 200 micro-W/m2, and clearly increased with increasing the specific resistivity of Si wafers. For comparison, a single crystal Si solar cell (2400mm2×0.5m, 0.5V×450mA in AM1.5 condition) was also exposed to the gamma ray, and its maximum electric power was 2 micro-W/m2. The output power of the present cell with high resistivity was two orders of magnitude higher than that of the Si solar cell.
Energy deposition in the Si cell during gamma irradiation was evaluated with the Monte Carlo Simulation for N Particles (MCNP) code. For Si with 0.5 mm thickness, the deposited energy was calculated to be 17000 micro-W/m2 for 200Gy/h. Comparing the output energy by the gamma irradiation, the energy conversion efficiency of the present Si cells reached about 1%. Unfortunately, the present cells were unstable even in ambient atmosphere, the conversion ratio of which decreased to less than one tenth in six months. Further development of the cells with higher conversion ratio and improvement of its stability will be discussed.
We report the effects of HfO2 nanoparticles as inclusion to the Zr0.5Hf0.5Ni0.8Pd0.2Sn0.99Sb0.01 half-Heusler matrix on the thermoelectric properties. X-ray powder diffraction and transmission electron microscopy were employed for the phase identification and microstructure characterization of the composites. The transport properties are mainly discussed with regards to the microstructure details.
Indium phosphide (InP) nanowires (NWs) were grown by molecular beam epitaxy on various substrates including SrTiO3 (001), Si (001) and InP (111) at a growth temperature of 380°C. We used the Vapor Liquid Solid assisted method with Au as a metal catalyst. The composition of the catalyst particles and the crystalline structure of the nanowires were compared using reflection high energy electron diffraction, scanning electron microscopy and high resolution transmission electron microscope. It is found that InP nanowires grown onto InP and SrTiO3 substrates are structurally defects free with a wurtzite structure. On Si (001) substrates, the presence of stacking faults and cubic phase insertion along the growth direction is observed. The effect of the substrate on the composition of catalyst droplets and consequently on the crystalline quality of the nanowires is discussed for the conditions of nucleation and defect formation.
A robust silicon gas sensor chip (platinum heater, low deformation membrane) has been designed and successfully operated with various metal oxide nanoparticles synthesized by an organometallic route (SnO2, ZnO) and deposited by a generic ink-jet method. High quality and micron thick layers are obtained and the CO gas sensitivity is presented.
We report recent progress on hydrogenated nanocrystalline silicon (nc-Si:H) solar cells prepared at different deposition rates. The nc-Si:H intrinsic layer was deposited, using a modified very high frequency (MVHF) glow discharge technique, on Ag/ZnO back reflectors (BRs). The nc-Si:H material quality, especially the evolution of the nanocrystallites, was optimized using hydrogen dilution profiling. First, an initial active-area efficiency of 10.2% was achieved in a nc-Si:H single-junction cell deposited at ~5 Å/s. Using the improved nc-Si:H cell, we obtained 14.5% initial and 13.5% stable active-area efficiencies in an a-Si:H/nc-Si:H/nc-Si:H triple-junction structure. Second, we achieved a stabilized total-area efficiency of 12.5% using the same triple-junction structure but with nc-Si:H deposited at ~10 Å/s; the efficiency was measured at the National Renewable Energy Laboratory (NREL). Third, we developed a recipe using a shorter deposition time and obtained initial 13.0% and stable 12.7% active-area efficiencies for the same triple-junction design.
The paper reports the tests results of ruthenium contacts coatings of magnetically controlled MEMS switches. During the tests the contact resistance was measured and the lifetime of MEMS switches was evaluated. After testing the analysis of the form and contact surface structure using SEM-method was carried out. The experiment results showed that the application of ruthenium nanolayers as the contact coating at slight increase of the contact resistance improves the lifetime of MEMS switches considerably.
Nowadays the increase of the lifetime of all MEMS switch types (RF MEMS relays, magnetically controlled on-off MEMS switches) is the most actual problem. The work resource and operating characteristics, first of all, contact resistance, of any switching unit, the basis of the construction of which is a dry contact, are determined by the contact coating properties. This is true for MEMS switches too.
The paper presents the results of the study of the operating characteristics of magnetically controlled MEMS switches with ruthenium and gold contact coatings of up to 100 nm thickness. During tests the following switching mode was used: switching voltage – 3 V, current - 10 μA. Each MEMS switch was subjected to 100 million cycles switching at the frequency of 100 Hz. After testing the contact surface investigation by SEM-method and electrical characteristics measurement was carried out. The paper presents SEM-images of the contacts surface and statistical date of electrical characteristics.
After 100 million switching cycles MEMS switches with nanoscale ruthenium coating have shown 100% operating capacity; 16% of switches with gold contacts turned out to be inoperative due to electrical contacts sticking.
The results of researches by SEM-method show that the contacts without nanoscale coating have the traces of strong erosion and melting; the contacts with nanoscale ruthenium coating practically did not change the form and flatness.
So, the test results indicate that nanoscale ruthenium coatings of the electrical contacts provide excellent resource for the switches operation of hundred millions and more cycles.
In this study, polymer-matrix composites are fabricated by mixing liquid epoxy resin with 0, 15, 20 and 25 wt % of PET. PET is used as a reinforcement material since it can be recycled and this implies a beneficial environmental impact. After mixing, specimens are dried at room temperature during 24 h and then cured at 150°C during 0.5, 0.75 and 1 h. Then mechanical tests are performed. Experimental results obtained from the flexion test for 100 % epoxy resin and 15 % PET samples, without curing treatment show values of 30 and 21 MPa, respectively. Flexure strength values for the same samples but after curing treatment are: 56, 90, 32 MPa and 69, 64, 70 MPa, for 0.5, 0.75 and 1 h of treatment, respectively. These data show an important increase in the flexure strength for the sample reinforced with 15 % PET and curing time of 1h. This is most likely due to the behavior of PET's powders at this temperature and time. They can partially melt improving the adhesion to the polymeric matrix. For a curing time of 0.75h, this property decreases, due to the high porosity developed in the composite and the poor adhesion between polymeric matrix and reinforced material.
Device scaling predicts that copper barrier layers of under 3 nm in thickness will soon be needed in back-end processing for integrated circuits, motivating the development of new barrier layer materials. In this work, nanoscale organic thin films for use as possible copper diffusion barrier layers are deposited by molecular layer deposition (MLD) utilizing a series of self-limiting reactions of organic molecules. MLD can be used to tailor film properties to optimize desirable barrier properties, including density, copper surface adhesion, thermal stability, and low copper diffusion. Three systems are examined as copper diffusion barriers, a polyurea film deposited by the reaction of 1,4-phenylene diisocyanate (PDIC) and ethylenediamine (ED), a polyurea film with a sulfide-modified backbone, and a polythiourea films using a modified coupling chemistry. Following deposition of the MLD films, copper is sputter deposited. The copper diffusion barrier properties of the film are tested through adhesion and annealing tests, including 4-point bend testing and TEM imaging to examine the level of copper penetration.The promise and challenges of MLD-formed organic copper diffusion barriers will be discussed.
Bone is a complex material with structural features varying over many different length scales. Lamellae in bone are discrete units of collagen fibril arrays that are the dominant structural feature at length scales of a few microns. The mechanical properties of bone are importantly dependent on the synergy between the lamellae and structural features at other length scales. However, the mechanical properties at this micron level will be indicative of the bone material itself and ignores the structural and geometric organizations prevalent at larger length scales. The isolation of volumes of bone at the lamellar level requires precision cutting methodology and this paper exploits Focused Ion Beam (FIB) methods to mill small cantilever beams from bulk bone material. Importantly, FIB milling can only be performed in a relatively high vacuum environment. Atomic Force Microscopy (AFM) mechanical tests are therefore performed in two environments, high vacuum and air in order to assess the effects of vacuum on bone beam mechanical behaviour. Our results indicate that little difference in the bone beam elastic modulus is found from bending experiments at deflections up to 100nm in different environments.
This study investigates a pathway to nanoporous structures created by hydrogen and helium implantation in aluminum. Previous experiments for fusion applications have indicated that hydrogen and helium ion implantations are capable of producing bicontinuous nanoporous structures in a variety of metals. This study focuses specifically on implantations of hydrogen and helium ions at 25 keV in aluminum. The hydrogen and helium systems result in remarkably different nanostructures of aluminum at the surface. Scanning electron microscopy, focused ion beam, and transmission electron microscopy show that both implantations result in porosity that persists approximately 200 nm deep. However, hydrogen implantations tend to produce larger and more irregular voids that preferentially reside at defects. Implantations of helium at a fluence of 1018 cm-2 produce much smaller porosity on the order of 10 nm that is regular and creates a bicontinuous structure in the porous region. The primary difference driving the formation of the contrasting structures is likely the relatively high mobility of hydrogen and the ability of hydrogen to form alanes that are capable of desorbing and etching Al (111) faces.