To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The photocatalytic degradation of methylene blue (MB) over a porous titania-hydroxyapatite (HAp) composite under ultraviolet radiation was studied. The catalyst was prepared by coating porous HAp with a titanium butoxide [Ti(OBu)4] sol at titania loadings of 17–49 wt%. Quantitative powder x-ray diffraction showed higher proportions of anatase as the calcination temperature increased from 500 to 800 °C due to crystallization of an amorphous precursor. The transformation of anatase to rutile was delayed until 900 °C, demonstrating the high thermal stability of the composite. Decomposition of HAp to α- and β- tricalcium phosphates takes place at 900 °C and is accompanied by the formation of perovskite at 1000 °C. A systematic study of the influence of calcination temperature and titania:HAp ratios demonstrated that for the optimal material, a surface area of 100 m2 g−1 was obtained at a titania loading of 49 wt% and calcination temperature of 600 °C. A highly dispersed suspension of finely ground titania-HAp enhanced the photodegradation of MB, allowed a high percentage recovery of catalyst, and was shown to be recyclable.
A cellular automation (CA) model has successfully been used to model the development of microstructure of an aluminum alloy during solidification to produce detailed structure maps for the solidified alloys. More recently, the application of CA models to practical castings/solidification conditions has attracted increasing research interest. However, the determination of the calculation parameters of any model associated with nucleation is difficult. Accordingly, this work investigates the detailed effect of the six parameters of nucleation on microstructure formation and morphology as well as the grain size by cellular automaton-finite control volume method (CAFVM). The nucleation parameters can be determined or estimated by comparing the calculated and experimental results, which enables a more practical prediction of the microstructure (morphology and grain size).
In this study, the mechanical properties and creep behavior of hybrid sol-gel silica-based coatings on copper substrates were investigated. Sol-gel processing was used to synthesize the organically modified silanes using mixtures of tetraethoxysilane and vinyltrimethoxysilane or glycidoxypropyltrimethoxysilane precursors. The mechanical and creep properties of the coatings were assessed using nanoindentation. The link between film structure and creep behavior from nanoindentation experiments was examined, and simple mechanical models were used to extract Young’s modulus and viscosity from fits to creep data. It is shown that the creep response of the coatings was influenced dramatically by the chain length and amount of organic substituent.
Microwave plasma chemical vapor deposition (CVD) was used to coat nanostructured diamond onto a copper–beryllium alloy (∼1.7 wt% Be) commonly used as a nonmagnetic gasket material in diamond anvil cell devices. The coating is expected to be useful in preventing plastic flow of Cu–Be gaskets in diamond anvil cell devices, thus allowing for increased sample volume at high pressures and leading to improved sensitivity of magnetic measurements. The coatings were characterized by Raman spectroscopy, glancing-angle x-ray diffraction, microscopy (optical, scanning electron, and atomic force), Rockwell indentation, and nanoindentation. CVD diamond deposition on pure copper substrates has historically resulted in poor coating adhesion caused by the very large thermal expansion mismatch between the substrate and coating as well as the inability of copper to form a carbide phase at the interface. While an interfacial graphite layer formed on the pure copper substrates and resulted in complete film delamination, well-adhered 12.5 μm thick nanostructured diamond coatings were produced on the copper–beryllium (Cu–Be) alloy. The nanostructured diamond coatings on Cu–Be exhibit hardness of up to 84 GPa and can withstand strains from Rockwell indentation loads up to 150 kg without delamination.
The electromigration and thermomigration behavior of eutectic tin-lead flip chip solder joints, subjected to currents ranging from 1.6 to 2.0 A, at ambient temperatures above 100 °C, was experimentally and numerically studied. The temperature at the chip side was monitored using both a temperature coefficient of resistance method and a thermal infrared technique. The electron wind force and thermal gradient played the dominant role in accelerated atomic migration. The atomic flux of lead due to electromigration and thermomigration was estimated for comparison. At the current crowding region, electromigration induced a more serious void accumulation as compared with thermomigration. Also, because of different thermal dissipations, a morphological variation was detected at different cross-sectional planes of the solder joint during thermomigration.
Part I [D.J. Morris and R.F. Cook, J. Mater. Res.23, 2429 (2008)] of this two-part work explored the instrumented indentation and fracture phenomena of compliant, low-dielectric constant (low-κ) films on silicon substrates. The effect of film thickness and probe acuity on the fracture response, as well as the apparent connection of this response to the perceived elastic modulus, were demonstrated. These results motivate the creation of a fracture model that incorporates all of these variables here in Part II. Indentation wedging is identified as the mechanism that drives radial fracture, and a correction is introduced that adjusts the wedging strength of the probe for the attenuating influence of the relatively stiff substrate. An estimate of the film fracture toughness can be made if there is an independent measurement of the film stress; if not, a critical film thickness for channel-cracking under the influence of film stress may be estimated.
We report on the effect of sample non-uniformity on the results of Hall-effect measurements. False positive Hall coefficients were obtained from an evidently n-type ZnO single crystal, although four electrodes with low contact resistance were made and the Van der Pauw parameter for this electrode configuration was close to 1.00. Further position-sensitive characterization revealed that the false positive Hall coefficient was due to non-uniform electrical properties of the sample. To demonstrate a false positive sign of the Hall coefficient due to sample non-uniformity, we devised a model structure made from evident n-type ZnO thin film and successfully reproduced a false positive Hall coefficient from n-type ZnO.
Based on the classical wetting theories, two theoretically predicted formulas of the apparent contact angles on square-pillar-array microstructured surfaces for Wenzel mode and Cassie mode have been derived, respectively. The theories of superhydrophobic stability on microstructured surfaces have been summarized. Four square-pillar-array samples were fabricated on titanium substrates by using the femtosecond laser micromachining technology, and wettability was analyzed by both experimental and analytical methods. The results showed that the titanium-based surfaces are superhydrophobic. The maximal apparent contact angle is up to 156.9°, while the corresponding sliding angle is 4.7°. Testing of the superhydrophobic stability of the surfaces showed that the maximal deviation of the apparent contact angles is only 0.6°. Analyses indicate that the stable superhydrophobicity of the supplied titanium-based surfaces is within a certain range and not perfect. To improve that, a practical controllable method is proposed herein for the design of a stable superhydrophobic surface.
Phase-change random-access memory (PCRAM) is a promising technology for future nonvolatile storage with the added potential for possible impact on dynamic random-access memory technologies. To be successful, however, PCRAM must be able to scale to dimensions on the order of a few tens of nanometers, considering the increasingly tiny memory cells that are projected for future technology nodes. The experiments discussed in this article directly address these scaling properties, examining both the materials themselves and the operation of nanoscale devices. One series of experiments is time-resolved x-ray diffraction studies of ultrathin films and nanostructures. Electron-beam lithography was applied to pattern thin films into nanostructures with dimensions down to 20 nm. The article also includes descriptions of prototype PCRAM devices, successfully fabricated and tested down to phase-change material cross sections of 3 nm × 20 nm. The measurements provide a clear demonstration of the excellent scaling potential offered by this technology.
A pushout test method was used to quantify effect of thermal cycling temperatures on the delamination toughness of an electron beam physical vapor deposited thermal barrier coating (EB-PVD TBC). The delamination toughness, Γi, was related to the maximum thermal cycling temperature, Th, equal to 1000, 1025, 1050, and 1100 °C. The measured delamination toughness varied from 9 to 95 J/m2. At Th = 1000 °C, Γi attained a maximum value, larger than that of the as-deposited sample and decreasing with increased Th. During the thermal cycling tests, the thermally grown oxide (TGO) was formed between the TBC and the bond coat deposited onto the superalloy substrate. Inside the TGO layer, mixture of Al2O3 and ZrO2 oxides was observed close to the TBC side with nearly pure Al2O3 phases close to the bond-coat side. During the pushout test, delamination occurred at the interface of the mixture and pure Al2O3 layer with an exception for Th = 1100 °C specimens where delamination also occurred at the interface between the TGO and bond-coat layers. The effect of thermal cycling temperatures on the delamination toughness is discussed in terms of the microstructural change and delamination behavior.
The synthesis of ultrafine tungsten carbide (WC) powder has been investigated from a WO3 + Mg + C mixture via combustion technique. The values of combustion parameters were estimated over the Mg concentration range 3 to 16 mol. Fast increasing tendency of the WC/W2C phase ratio from Mg concentration has been found in the final products. Phase pure WC was prepared with more than 10 mol Mg, and a small amount of ammonium carbonate (or urea) was blended with the WO3+ C mixture. The effects of the combustion conditions on product morphology and composition were evaluated using scanning electron microscopy and x-ray diffraction analysis. The results of the investigation indicate that carbon-containing compounds significantly enhance the combustion synthesis process; leading to higher conversion efficiencies and phase pure WC formation at 1500–1550 °C. The crystalline particles of WC showed a narrow distribution in particle size, with a mean diameter around 200 nm. The results are discussed in the context of gas-phase and solid-phase transport models.
The effect of minor transition metal (TM) additives of Ni, Co, or Zn on the interfacial reactions of the solder joints between Sn–Ag–Cu (SAC) solder and the Cu/Ni(P)/Au substrate was investigated, especially subsequent to multi-reflowing. (Cu,Ni)6Sn5 formed at the interface of all the joints except that of SAC–Ni, of which the interfacial compound was (Ni,Cu)6Sn5. The interfacial compounds of the SAC–Co and SAC–Zn contained a small amount of alloying elements of less than 3 at.%. Two P-rich layers, Ni3P and Ni–Sn–P emerged at the interface of the SAC joints. Nanoindentation analysis indicates that the hardness and Young’s modulus of these two phases were slightly higher than those of the Ni(P) substrate, which were in turn much greater than those of the Cu–Ni–Sn compounds. Worthy of notice is that with TM additions, the Ni–Sn–P phase between Ni3P and interfacial compounds was absent even after 10 reflows. For the SAC–Co joints, the growth of Ni-containing intermetallic compounds within the solder gave rise to the excess Ni dissolution, which caused a discrete Ni3P layer and over-consumed Ni(P) substrate underneath the grooves in-between (Cu, Ni)6Sn5 scallop grains at the interface. This phenomenon is presented for the first time, and the mechanism is proposed in this study.
The ever-increasing demand for information storage has pushed research and development of nonvolatile memories, particularly magnetic disk drives and silicon-based memories, to areal densities where bit sizes are approaching nanometer dimensions. At this level, material and device phenomena make further scaling increasingly difficult. The difficulties are illustrated in the examples of magnetic media and flash memory, such as thermal instability of sub-100-nm bits in magnetic memory and charge retention in flash memory, and solutions are discussed in the form of patterned media and crosspoint memories. The materials-based difficulties are replaced by nanofabrication challenges, requiring the introduction of new techniques such as nanoimprinting lithography for cost-effective manufacturing and self-assembly for fabrication on the sub-25-nm scale. Articles in this issue describe block-copolymer lithographic fabrication of patterned media, materials studies on the scaling limits of phase-change-based crosspoint memories, nanoscale fabrication using imprint lithography, and biologically inspired protein-based memory.
A method for evaluating true interlamellar spacing from micrographs is proposed for a multidomained lamellar structure. The microstructure of these materials is assumed to be composed of many domains with the lamellae aligned roughly parallel to each other within each domain and with the domains themselves randomly oriented relative to one another. An explicit expression for the distribution of apparent interlamellar spacing is derived assuming that the distribution of the true interlamellar spacing is Gaussian. The average interlamellar spacing is close to the peak interlamellar spacing observed in the distribution. The theoretical distributions are compared with experimental ones obtained by analyzing micrographs of PbTe–Sb2Te3 lamellar composites.