To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we discuss the accuracy of ab-initio calculations for self-interstitial and boron dif-fusion in silicon in light of recent experimental data by de Salvador et al. and Bracht et al. Map-ping the experimental data onto the activation energy vs. Fermi level representation commonly used to display ab-initio results, we show that the experimental results are consistent with each other. While the theoretical LDA value for the boron activation energy as a function of the Fermi level agrees well with experiment, we find for the self-interstitial in line with other calculations an underestimation of the experimental values, despite using total-energy corrections.
The impact of device dimension and architecture on the device performance of an all–solution fabrication organic thin film transistor (OTFT) has been investigated. The saturation drain current is inversely proportional to the channel length, indicating that a characteristic of field–effect like transistor has been obtained. In contrast, the drain current is independent of the thickness of polyvinylphenol (PVP) dielectric layer and a large leakage current is observed at the gate electrode indicating that the device also shows electrochemical transistor characteristics. Although separate conductance measurements of a single poly(3–hexylthiophene) (P3HT) layer and a P3HT/PVP layer reveal that the conductance is proportional to the thickness of the layer, the maximum achieved drain current in the fabricated OTFT is inversely proportional to the P3HT thickness. Using this data, an interface of P3HT/PVP or a maximum P3HT thickness for a working transistor of approximately 160 ± 16 nm can be extracted. The mechanism of operation of these devices is discussed.
Trace contaminant detection in water represents both a grand challenge and great opportunity for materials scientists and engineers. The recent discovery that functional DNA can be obtained to bind selectively to a wide range of contaminants makes it possible to interface these molecules with nanoscale materials, such as gold nanoparticles and quantum dots, to transform the molecular reorganization between functional DNA and contaminants into physically detectable colorimetric and fluorescent signals. Micro- and nanofluidic devices have also played a critical role in lowering the detection limits of functional-DNA sensors, promoting sensor regeneration and thus improving sensor performance and allowing long-term unattended monitoring of water quality.
This investigation focused on the study of La0.67Sr0.33MnO3 (LSMO) thin films with 5 atomic percent Ru-doping (LSMRO). Specifically, we fabricated epitaxial LSMO and LSMRO thin films on LaAlO3 (LAO) (001) substrates by pulsed laser deposition. Resistance- temperature measurement results showed that the Curie temperature (Tc) of LSMRO thin film deposited under an oxygen ambient pressure of 150 mTorr at 830 °C was above room temperature. Hysteresis measurements and anisotropic magnetoresistance (AMR) results confirmed that coercivity of the optimized LSMRO films, as compared with that of LSMO films, can be greatly increased at low temperatures. The study successfully demonstrated the coercivity enhancement effect of Ru-doping on LSMO thin films deposited on LAO substrates.
Sulfur nanoparticles were synthesized from hazardous H2S gas by desulfurization based on liquid redox process [1]. The use of novel biodegradable iron chelates, in particular, FeCl3-malic acid chelate system has been extensively studied in various aqueous surfactant systems of Tween 80, SDS, CTAB for catalytic oxidation of H2S gas at ambient conditions of temperature, pressure and neutral pH. The structural features of sulfur nanoparticles have been characterized by XRD, TEM, and DLS measurements. XRD analysis indicates the presence of Metal-sulfur (JCPDS-08247). TEM analysis shows that the morphology of sulfur nanoparticles synthesized in aqueous surfactant system of Tween 80 is nearly uniform in size of 12nm average particle size, in SDS surfactant system shows 15nm average particle size, where as sulfur nanoparticles synthesized in CTAB shows average particle size of 7nm. The DLS result shows the mono-dispersity of the sulfur nanoparticles in the aqueous surfactant systems. The described process serves mainly two objectives; (a) waste utilization for preparation of commercially important nano-sulfur product and (b) reduction in environmental pollution. 1. G. Nagal, Chem. Eng. 104, 125 (1997).
Thin film silicon solar cells, consisting of an epitaxially grown active layer on a low quality highly doped silicon substrate, incorporate many attractive features usually associated with their sister cells based on bulk silicon. However, the efficiency of the current epitaxial semi-industrial screen printed cells is limited to 11-12% mainly due to optical shortcomings. This paper will give an overview of our work aimed at tackling the 2 most important problems: (i) Finding and implementing an adequate front surface texture and (ii) the simulation, fabrication and incorporation of an intermediate reflector.
The former issue has been addressed by the development of plasma texturing based on halogen species. This method allows us to fulfil the sometimes contradictory requirements for the textured surface, i.e. a uniform and reduced reflection, a strong lambertian character to scatter the light and a limited removal of silicon. It will be shown that the scattering efficiency is dependent on both the wavelength of the impinging light and on the silicon removal during the texturing process.
The second and main issue of this work is the limited absorption volume of the epitaxial layer. To resolve this drawback, an intermediate reflector is placed at the epi/substrate interface to enhance the path length of the low energy photons through the epi-layer. In practice, a multi-layer porous silicon stack is created by electrochemical anodization of the substrate. The reflection at the epi/reflector/substrate interface is a combination of several different effects including a Bragg mirror and Total Internal Reflection (TIR). Measurements of the external reflectance as well as extraction of the internal reflection parameters are used to clarify the issue. Advanced structures, including chirped porous silicon stacks, are introduced. Finally, the benefits of the reflector on the level of the epitaxial silicon solar cell are analysed. Efficiencies close to 14% are obtained for epitaxial cells incorporating an advanced porous Si reflector.
Barium copper sulfur fluoride thin films with a face-centered cubic phase in the Fm3m space group were synthesized via RF magnetron sputtering. The results of a detailed optical and electronic characterization of the films are presented. As-deposited, they exhibit degenerate p-type conductivity at room temperature of approximately 260 S/cm – higher than that of any previously reported p-TC. Their conductivity after post-deposition processing increases to as high as 800 S/cm. The films exhibit bandgaps ranging from 1.45-1.75 eV. They are typically deposited with a substrate temperature between room temperature and 100°C, making them suitable for deposition on plastic as well as glass or crystalline substrates. It was found that a silica protective layer reduces degradation in film transparency that is caused by exposure to air.
Using cathodoluminescence measurements, we studied the excitation of rare earth ions in LiNbO3 and compare it with previously studied Eu ions in GaN. We find that in both hosts and all dopants the most efficient excitation pathways involves a defect traps that capture the energy from the electron-hole pairs created in the host by E-beam irradiation. Even then the excitation efficiency in LiNbO3 is very low. Moreover, only a small fraction (<10-4) of the RE ions that are optically active can be excited through this pathway. We explain this behavior by a negligible direct excitation and a strong dependence of the excitation efficiency on the distance between the defect trap and the rare earth ion. The density of the defect traps is small such that many rare earth ions are far away from traps.
The electromigration behavior of the Cu/Au/SnAgCu/Cu combination was investigated under 103 A/cm2 of current stressing at ambient temperature. The Au layer, when it acts as a cathode, was consumed continuously, and no significant compound was found at the interface. Meanwhile, Cu6Sn5 was formed at the anodic Cu layer, and the thickness of the compound increased with increasing time. The Au atoms were found to be trapped in Cu6Sn5 within the solder matrix. The AuSn4 compound precipitated while attaching to Cu6Sn5 at the Cu6Sn5/solder interface. The thermomigration effect was found to be insignificant in this work as no obvious reaction occurred at the cathode/anode sides or in the solder matrix without current stressing.
Phase equilibria in quasibinary system ScPO4-Na3PO4 and formation of heterovalent Zr-substituted solid solutions (up to 10 mol%) for Sc3+ in Na3Sc2(PO4)3 complex phosphate were studied by ceramic technique at 1050°C. Obtained samples were investigated with X-ray powder diffraction and impedance spectroscopy. Zr-substituted (10 mol%) Na3Sc2(PO4)3has ionic conductivity of 3.18.10-1 S/cm at 300°C.
The liquid lens based on MEMS technology can be an appropriate solution to improve the imaging capability of a capsule endoscope because it can be realized small enough and also consume negligible power. In this paper, a cylinder-type liquid lens was designed to minimize the dead area and then fabricated with MEMS technology combining the silicon thin-film process and the wafer bonding process where the multiple dielectric layer of Teflon, silicon nitride and thermal oxide was formed on the cylinder wall. The focal length of the lens module including the fabricated liquid lens was changed reproducibly as a function of the applied voltage. With the change of 30V in the applied bias, the focal length of the constructed lens module could be tuned in the range of about 42cm. The fabricated liquid lens was also proven to be small enough to be adopted in the capsule endoscope, which means the liquid lens can be utilized for the imaging capability improvement of the capsule endoscope.
Organic vapour sensors based on poly (methylmethacrylate)-multi-wall carbon nanotubes (PMMA-CNT) conductive polymer nanocomposite (CPC) were developed via layer by layer technique by spray deposition. CPC Sensors were exposed to three different classes of solvents (chloroform, methanol and water) and their chemo-electrical properties were followed as a function of CNTcontent in dynamic mode. Detection time was found to be shorter than that necessary for full recovery of initial state. CNT real three dimensional network has been visualized by Atomic force microscopy in a field assisted intermittent contact mode. More interestingly real conductive network system and electrical ability of CPC have been explored by current-sensing atomic force microscopy (CS-AFM). Realistic effect of voltage on electrical conductivity has been found linear.
By combining the local density approximation (LDA) with dynamical mean field theory (DMFT), we report a systematic analysis of the spectral properties of δ-plutonium with varying 5f occupancy. The LDA Hamiltonian is extracted from a tight-binding (TB) fit to full-potential linearized augmented plane-wave (FP-LAPW) calculations. The DMFT equations are solved by the exact quantum Monte Carlo (QMC) method and the Hubbard-I approximation. We show the strong sensitivity of the spectral properties to the 5f occupancy, which suggests using this occupancy as a fitting parameter in addition to the Hubbard U. By comparing with PES data, we conclude that the “open shell” 5f5 configuration gives the best agreement, resolving the controversy over 5f “open shell” versus “close shell” atomic configurations in δ-Pu.
To improve the insufficient oxidation resistance of Titanium Aluminides at temperatures above 750°C the fluorine effect offers an innovative way. The focus of this paper is to define the fundamental material variables for the fluorine effect related to the macroscopic behaviour (oxidation resistance) and its long time stability.The thermodynamic model predicted the fluorine effect for the TiAl within a corridor of total fluorine amount in terms of partial pressures. To realize the fluorine effect the required F-concentration [in at.-%] within the near surface region had to be found. Using fluorine ion implantation several fluences within 5e15 and 5e17 F cm-2 were implanted with an energy of 20 keV. The implantation depth profiles were calculated by using the Monte Carlo simulation code T-DYN and verified experimentally by using the non-destructive PIGE - technique (Proton Induced Gamma-ray Emission). After oxidation tests at 800°C – 1000°C a value of 2e17 F cm-2 / 20 keV was determined as an optimal implantation parameter set. Following these results the maximal fluorine concentration was identified to be a fundamental material variable for starting the alumina formation with a required fluorine amount of about 40-45 at.-%. However this maximum fluorine concentration showed a rapid decrease to values less than 5 at.-% only after a few hours of oxidation (900°C and 1000°C) followed by a slow decrease. Therefore the maximum fluorine concentration Cmax – now located at the metal/oxide – interface – was identified to be a fundamental parameter for the long time stability. An exponential decay function containing a constant term of about 1 at.-% was found to describe the time behaviour of Cmax for isothermal and cyclic oxidation (900°C, 1000°C). Because the alumina scale on the surface acts as a diffusion barrier for fluorine, the stability of Cmax is strongly influenced by the F-diffusion into the metal. From the F-depth profiles the diffusion coefficient of fluorine into the TiAl at 900°C was determined as a fundamental parameter for the long-term stability ofCmax showing a value of 1.56e-15cm2/s.
An AlGaAs/InGaAs HEMT grown on Si substrate with Ge/GexSi1−x buffer is demonstrated. The Ge/GexSi1−x metamorphic buffer layer used in this structure was only 1.0 μgm thick. The electron mobility in the In0.18Ga0.82 As channel of the HEMT sample was 3,550 cm2/Vs. After fabrication, the HEMT device demonstrated a saturation current of 150 mA/mm and a maximum transconductance of 155 mS/mm. The well behaved characteristics of the HEMT device on the Si substrate are believed to be due to the very thin buffer layer achieved and the lack of the antiphase boundaries (APBs) formation and Ge diffusion into the GaAs layers.
In this work we studied metaloxide films such as ZnO, In2O3-ZnO, In2O3-ZnO-ZrO2 and Ga2O3-In2O3-ZnO deposited by pulsed laser deposition on fused silica substrates at room temperature. Optical transmission measurements in the ultra violet – visible region showed that oxygen-rich atmospheres during deposition help to obtain more transparent films in the optical region while improving overall UV absorption transition related to the band gap. Less resistive films are produced in oxygen-rich atmospheres but an increase of oxygen pressure leads to higher resistivity films.
Asymmetric PCRAM structure with the upper contact opening at an offset to the bottom contact opening allowed us to improve the thermal distribution within the phase change layer and lower the reset current to 50% that of a conventional symmetrical structure. In terms of endurance, asymmetric cell lasted for 1.1 × 108 cycles which is at least 10X higher than the conventional symmetrical cell. These results were based on Ge2Sb2Te5 as the phase change material.
In this paper, we used nitrogen doped Ge2Sb2Te5 [1] instead and the thickness of this phase change layer was 100 nm. During the sputtering of Ge2Sb2Te5, the Argon gas flow rate was fixed at 15 sccm while nitrogen flow rates of 0, 3, 4.5 and 6 sccm were introduced each time. Thus N2/Ar gas ratio of 0, 0.2, 0.3 and 0.4 were obtained respectively. After fabrication, the cell endurance of Asymmetric PCRAM cells incorporating Ge2Sb2Te5 doped with varying concentrations of nitrogen was tested. During testing, the PCRAM was repeatedly Reset/Set and the resistances of the two states were recorded at every 100k cycles. The cell was considered to be functioning well when its Reset/Set resistance ratio was greater than 10. From experiments, N-doped asymmetric cell with N2/Ar gas ratio of 0.2 lasted 2.4 × 1010 cycles which is 1000 times that of a conventional symmetrical PCRAM cells. The N2 doping concentration was also shown to be optimized when the N2/Ar gas ratio was fixed at 0.2. Higher doping concentrations with N2/Ar gas ratio of 0.3 and 0.4 decreased the cell endurance to 8.8 × 108 and 7.6 × 108 cycles respectively. Excessive doped nitrogen atoms might have degraded the phase change material, causing breakdown to occur sooner.
N-doped conventional symmetrical PCRAM was also fabricated and its overwrite cycles were measured only up to 1.2 × 109. With better thermal confinement, asymmetric PCRAM has proved to be better in endurance too. The above results were based on asymmetric PCRAM cells with 1 µm offset.
[1] H. Horii et al, “A Novel Cell Technology Using N-doped GeSbTe Films For Phase Change RAM”, p. 177-178, VLSI Tech. 2003
Titanium and cobalt silicides have long been used as gate electrode materials for very large-scale integrations (VLSI) circuits. As scaling has pushed the industry to quarter micron technologies and below, cobalt has become the material of choice for forming silicides, since it can maintain its low resistivity on much narrower line widths. Oxidation of the cobalt film is a concern during silicide processing, as the cobalt oxide will not be removed during the cobalt etch step. To protect against the oxidation of the cobalt layer during the silicidation process, the reaction is conducted underneath a titanium nitride (TiN) capping layer. Variations in the TiN capping layer thickness were investigated to determine the affect on oxygen sensitivity of the cobalt silicide process. A strong correlation was found to the thickness of the TiN-capping layer, to the oxygen concentration required to oxidize cobalt during the silicidation process.
We develop rapid chemical vapor sensors and micro gas chromatography (μGC) analyzers based on the optofluidic ring resonator (OFRR). An OFRR is a micro-sized thin-walled glass capillary; the circular cross-section of the capillary acts as an optical ring resonator while the whispering gallery modes or circulating waveguide modes (WGMs) supported by the ring resonator interact with the vapor samples passing through the capillary. The OFRR interior surface is coated with a vapor-sensitive polymer. The analyte and polymer interaction causes the polymer refractive index (RI) and the thickness to change, which is detected as a WGM spectral shift. Owing to the excellent fluidics, the OFRR vapor sensor exhibits sub-second detection and recovery time with a flow rate of 1 mL/min. On-column separation and detection in the OFRR based μGC system is also demonstrated, showing efficient separation of vapor mixtures and presenting highly reproducible retention time for the individual analyte. Compared to the conventional GC system, the OFRR μGC has the advantage of small size, rapid response, and high selectivity over a short length of column.