To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Providing a comprehensive introduction to the fundamentals and applications of flow and heat transfer in conventional and miniature systems, this fully enhanced and updated edition covers all the topics essential for graduate courses on two-phase flow, boiling, and condensation. Beginning with a concise review of single-phase flow fundamentals and interfacial phenomena, detailed and clear discussion is provided on a range of topics, including two-phase hydrodynamics and flow regimes, mathematical modeling of gas-liquid two-phase flows, pool and flow boiling, flow and boiling in mini and microchannels, external and internal-flow condensation with and without noncondensables, condensation in small flow passages, and two-phase choked flow. Numerous solved examples and end-of-chapter problems that include many common design problems likely to be encountered by students, make this an essential text for graduate students. With up-to-date detail on the most recent research trends and practical applications, it is also an ideal reference for professionals and researchers in mechanical, nuclear, and chemical engineering.
The thermodynamics of irreversible processes is based on the expression of the entropy source density derived in the previous chapter. From it, phenomenological laws of transport can be presented in a unified way. Heat transport is given by Fourier’s law that leads to a heat equation in which Joule and Thomson effects can be included. It can explain thermal dephasing, heat exchangers and effusivity. Matter transport leads to the Dufour and Soret effects, which imply Fick’s law and the diffusion equation, which can be used to discuss Turing patterns and ultramicroelectrode. Transport of two types of charge carrier leads to the notion of diffusion length, giant magnetoresistance and planar Ettingshausen effect. Transport can be perpendicular to the generalised force, as in the Hall, Righi-Leduc and Nernst effects. The formalism accounts also for thermoelectric effects such as the Seebeck and Peltier effects, with which to analyse thermocouples, a Seebeck loop, adiabatic thermoelectric junctions, the Harman method of determing the ZT coefficient of a thermoelectric material and the principle of a Peltier generator.
The internal energy of the electromagnetic field is distinct from that of the matter exposed to the field. The choice of field variable is determined by physical considerations concerning the electric, displacement, magnetic and induction fields. Legendre transform are worked out in order to define electric and magnetic enthalpies and free enthalpies. Spatial derivatives of the enthalpies yield the force densities that dielectrics and magnets experience in inhomogeneous electric and magnetic induction fields. Either internal energy or electric enthalpy must be used to analyse the force on a dielectric inserted in a capacitor, depending on the constraint (constant charge or constant field). Likewise, internal energy or magnetic enthalpy must be considered to analyse the force on a paramagnetic material inserted in a coil or in between the poles of a magnet. A complete analysis of adiabatic demagnetisation offers an example of application of Mayer’s relation to specific heat at constant induction field or constant magnetisation. The effect is predicted for the case of a paramagnetic material with a magnetisation that obeys Curie’s law.
By applying the first and second laws to systems consisting of two subsystems separated by a wall, it is possible to determine the equilibrium conditions relevant for that wall's properties, e.g. a fixed diatermal wall, a mobile diathermal wall, a fixed permeable wall. The second law imposes a condition on the entropy production rate which implies relations between heat and temperature difference, matter transfer rate and chemical potential difference, volume rate of change and pressure difference. Thus, transport equations are introducted, akin to Fourier law, Fick law and Poiseuille law. These processes are examples of dissipative processes. A worked solution shows that when two subsystems are subjected to a mechanical action, non-symmetric heat flow may occur.