To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The publication of L. Pearce Williams's definitive biography of Faraday has led to lively discussion of the influence of Naturphilosophie on Davy and Faraday, and of the role played by Bosco vichean atomism in their scientific development. In a recent article J. Brookes Spencer argued that Boscovich's force law, involving interaction between point atoms independent of surrounding particles, was only compatible with Faraday's view of gravity and not with his views on other forces. This would of course contradict the notion of unity which is absolutely fundamental to Boscovich's Theoria.
At the end of the last century Paul Tannery published an article on geometry in eleventh-century Europe, which he began with the following statement:
“This is not a chapter in the history of science; it is a study of ignorance, in a period immediately before the introduction into the West of Arab mathematics.”
Newton wrote in the Principia that all bodies are to be regarded as subject to the principle of gravitation. Every body, however great or small, is related to every other body in the universe by a mutual attraction. It was this postulated universality of the force of gravity which contributed so greatly to the order and unity of the Newtonian world. This unity was, for its followers, an untested article of faith for nearly a century after the Principia. During this time the evidence of gravitational attraction continued to be drawn from the motions of the earth, moon, planets, comets, and falling bodies—phenomena which span an intermediate range of masses, sizes, and distances. In three domains of experience, involving the extreme upper and lower limits of masses and dimensions, the action of gravity had not yet been observed: the gravity of the “fixed” stars; the mutual attraction of terrestrial bodies; and the gravitation of light. The task of deducing observable consequences from each of these supposed instances of universal gravitation fell to the Reverend John Michell (1724–1793), a teacher at Cambridge (1749–1763) and afterwards Rector of Thornhill, Yorkshire. His renowned London friend Henry Cavendish (1731–1810) encouraged him in these researches and became involved in the resulting observational and experimental questions. The immersion of Michell and Cavendish in gravitational studies was an essential feature of their commitment to a unified Newtonian world. Their commitment had yet a broader significance: Newton's theory of gravitation inspired their image of physical reality, and it served as their model of an exact science. This paper is an attempt to relate the personal friendship of Michell and Cavendish, their scientific collaboration, and their common Newtonian philosophy. Its chief focus is on Michell's 1784 plan for weighing the stars by the gravitational retardation of their light; his project of weighing the world by means of a torsion balance is treated by way of an epilogue.